

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

LOW-POWER FAULT TOLERANCE FOR SPACECRAFT
FPGA-BASED NUMERICAL COMPUTING

by

Joshua D. Snodgrass

September 2006

 Dissertation Supervisor: Herschel H. Loomis, Jr.

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Doctoral Dissertation

4. TITLE AND SUBTITLE: Low-Power Fault Tolerance for Spacecraft FPGA-
Based Numerical Computing

6. AUTHOR(S) Joshua D. Snodgrass

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 Fault tolerance is explored for spacecraft computers employing Field-Programmable Gate Arrays
(FPGAs). Techniques are investigated for tolerating Single Event Upsets (SEUs) caused by radiation in
the space environment. A new architectural approach is proposed for achieving SEU tolerance that
minimizes power and size overhead costs by reducing the precision with which error checking is done.
This Reduced Precision Redundancy (RPR) approach is compared to the traditional Triple Modular
Redundancy (TMR) method. A methodology is presented for quantifying the costs and benefits of
various performance factors, and thereby determining optimal design solutions. This methodology
considers reliability as a performance factor that can be traded-off against factors such as power, size
and speed.
 An SEU simulation system is developed for studying the effect of SEUs on actual FPGA circuits.
Live proton radiation testing and computer-controlled fault injection simulations demonstrate the
effectiveness of RPR and TMR. Computer simulations of power usage demonstrate the savings
achieved with RPR. RPR is as reliable as TMR while requiring 1/3 to 1/2 as much power. The effect of
imprecise computations that may be produced by an RPR system is studied. An image processing
application illustrates the type of problems for which RPR can be applied effectively.

15. NUMBER OF
PAGES

247

14. SUBJECT TERMS FPGA, computer, fault tolerance, power, single event upset, reliability,
spacecraft, space radiation

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

LOW-POWER FAULT TOLERANCE FOR SPACECRAFT FPGA-BASED
NUMERICAL COMPUTING

Joshua D. Snodgrass

Major, United States Air Force
B.S., Stanford University, 1995
M.S., Stanford University, 1996

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: __
Joshua D. Snodgrass

Approved by:

______________________ _______________________
Herschel H. Loomis, Jr., Professor Jon T. Butler, Professor
Electrical and Computer Engr. Electrical and Computer Engr.
Dissertation Supervisor

______________________ _______________________
Douglas J. Fouts, Professor Sherif Michael, Professor
Electrical and Computer Engr. Electrical and Computer Engr.

Alan A. Ross, Visiting Professor
Space Systems Academic Group

Approved by: __
 Jeffrey B. Knorr, Chair, Department of Electrical and Computer Engr.

Approved by: __
 Julie Filizetti, Associate Provost for Academic Affairs

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Fault tolerance is explored for spacecraft computers employing Field-

Programmable Gate Arrays (FPGAs). Techniques are investigated for tolerating Single

Event Upsets (SEUs) caused by radiation in the space environment. A new architectural

approach is proposed for achieving SEU tolerance that minimizes power and size

overhead costs by reducing the precision with which error checking is done. This

Reduced Precision Redundancy (RPR) approach is compared to the traditional Triple

Modular Redundancy (TMR) method. A methodology is presented for quantifying the

costs and benefits of various performance factors, and thereby determining optimal

design solutions. This methodology considers reliability as a performance factor that can

be traded-off against factors such as power, size and speed.

An SEU simulation system is developed for studying the effect of SEUs on actual

FPGA circuits. Live proton radiation testing and computer-controlled fault injection

simulations demonstrate the effectiveness of RPR and TMR. Computer simulations of

power usage demonstrate the savings achieved with RPR. RPR is as reliable as TMR

while requiring 1/3 to 1/2 as much power. The effect of imprecise computations that may

be produced by an RPR system is studied. An image processing application illustrates

the type of problems for which RPR can be applied effectively.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. BACKGROUND ..1

1. Computing In the Space Environment ..1
2. Single Event Upset (SEU)..3
3. Field-Programmable Gate Array (FPGA)...5
4. Power Consumption...7

C. MOTIVATION ..8
D. CONTRIBUTIONS..9
E. DISSERTATION ORGANIZATION ..10

II. FAULT-TOLERANT DESIGN CONCEPTS ...11
A. FAULT TOLERANCE FOR FPGAS ..11
B. PRINCIPLES OF FAULT TOLERANCE..12

1. Fault/Error Detection vs. Correction...12
2. Concurrent Error Detection and Checkpointing............................12
3. Configuration Scrubbing...14
4. Redundancy..15

a. Configuring Redundant Components16
b. Selective Redundancy ...17

5. Complexity/Confidence Trade-offs ..18
C. ERROR CODING TECHNIQUES..20
D. TRIPLE MODULAR REDUNDANCY (TMR)..21
E. REDUCED PRECISION REDUNDANCY (RPR)23

1. Background ..23
2. Architecture Description ...25
3. Applying RPR to Computational Problems27

a. Class A Problems ..27
b. Class B Problems ..29
c. Approximate Solutions..30
d. RPR Suitability..34
e. Examples ...36
f. Applying RPR to non-FPGA Systems38

5. Flexible Precision Computation..39
F. VOTER ISSUES...40
G. SUMMARY ..42

III. POWER SAVINGS TECHNIQUES..45
A. POWER EFFICIENCY FOR FPGA DESIGNS...45
B. BACKGROUND ..45

1. Relative Contributions of Static and Dynamic Power....................47
2. Reducing Static Power...47
3. Reducing Dynamic Power ...49

C. IMPACT OF FAULT TOLERANCE ON POWER USAGE....................52

viii

1. Power Cost of TMR ...52
2. Alternative Solutions ...53
3. Power Advantages of RPR ..55

IV. DEVELOPMENT OF A TOTAL PERFORMANCE METRIC...........................57
A. OBJECTIVE ..57
B. CONCEPT..57
C. TOTAL PERFORMANCE METRIC ...58

1. Background ..58
2. Cost Metrics..59
3. Benefit Metrics ...62
4. Total Performance Metric...64
5. Example 1: Generating TPM (Satellite Attitude Control).............65
6. Example 2: Determining K Factors (Satellite Image

Processing) ..71
7. Accounting for Reliability Factors ...75

D. MEASURING RELIABILITY...77
1. Assumptions ...79
2. SEU Rates in Space Environment ..80
3. SEU Cross Section..83
4. Reliability and Mean Time Between Error84
5. Reliability Comparison Between RPR and TMR85

E. SUMMARY ..88

V. CORDIC ALGORITHM ..91
A. OVERVIEW...91

1. Rationale for Choosing CORDIC...91
2. CORDIC Applications...92

B. MATHEMATICAL FOUNDATION...93
1. Derivation of Circular Rotation Mode...94
2. Selection of Pseudorotation Angles ..96

C. ERROR PROPAGATION IN ITERATIVE AND PIPELINED
DESIGNS..97
1. Feedback and Error Propagation...98
2. Using TMR and RPR to Correct CORDIC Faults101

VI. SIMULATION ENVIRONMENT AND RESULTS...105
A. OVERVIEW...105
B. SEU SIMULATIONS ..105

1. SEU Simulation Environment ..105
2. Test Circuits ...108

a. “Davis TMR” Iterative CORDIC ...108
b. “Davis RPR” Iterative CORDIC ..109
c. “Unprotected” Iterative CORDIC ..110
d. “Improved TMR” Iterative CORDIC...................................111
e. “Improved RPR” Iterative CORDIC....................................112

3. Results ...113
a. Data..113

ix

b. Discussion..118
C. POWER SIMULATIONS...120

1. Power Simulation Environment ...121
2. Test Circuits ...124
3. Results ...125

D. SUMMARY ..129

VII. RADIATION TESTING ...131
A. OVERVIEW...131

1. Purpose..131
2. Test Equipment, Setup, and Designs..132
3. Test Procedure ...134

B. RESULTS ...136
1. Fluence-to-SEU and Cross Section...137
2. Variability of SEUs and Bit Sensitivity..139
3. Polarity of Bit Flips..142
4. Multiple Bit Upsets (MBUs)..145

C. VALIDATION OF SIMULATIONS ...146
D. ON-ORBIT RELIABILITY..150

VIII. PRACTICAL RPR IMPLEMENTATION ISSUES...155
A. OVERVIEW...155
B. WORKING WITH UPPER AND LOWER BOUNDS ESTIMATES155

1. Properties of Numerical Functions Amenable to
Approximation ...155

2. Lookup Tables versus Direct Calculation......................................158
3. Improved Method for Generating Lookup Table Estimate

Values ..163
4. Designing a Voter to Compare Precise and Approximate

Calculations ..165
C. CONSEQUENCES OF IMPRECISION ...167

1. Scenario Description..168
2. Image Compression with Discrete Cosine Transform..................169

a. Background ...169
b. Measuring Image Quality...171
c. MATLAB Testbed ...172

3. Effect of Imprecision on Image Quality...173
4. Affect on Total Performance Metric (TPM)181

IX. CONCLUSION ..187
A. SUMMARY OF RESEARCH ..187
B. ORIGINAL CONTRIBUTIONS..189
C. FUTURE WORK...191
D. CONCLUDING REMARKS ..194

APPENDIX A – CORDIC PROCESSOR DESIGN...195
A. OVERVIEW...195
B. DESIGN PROCESS...197

1. Schematic Design Specification ..197

x

2. VHDL Design Specification for Iterative CORDIC199
3. VHDL Design Specification for Pipelined CORDIC202

C. SYNTHESIS TOOL VARIABILITY ..205

APPENDIX B – MATLAB ERROR SIMULATION CODE ..209
A. CORDIC ERROR PROPAGATION CODE ..209

1. CORDIC Algorithm with Specific Forced Errors209
2. Supporting MATLAB Code for CORDIC Calculations211

B. DCT ERROR SIMULATION CODE..214

LIST OF REFERENCES..217

INITIAL DISTRIBUTION ...225

xi

LIST OF FIGURES

Figure 2.1 Basic Concurrent Error Detection (CED) Architecture (from [46])13
Figure 2.2 Reliability of Serial Systems (left) and Parallel Redundant Systems (right)...16
Figure 2.3 Redundancy at System-Level (top) and Component-Level (bottom)..............17
Figure 2.4 Complexity-Confidence Relationship (left) and System Structure (right)18
Figure 2.5 Simple TMR Architecture..21
Figure 2.6 Reliability of NMR Systems..22
Figure 2.7 Simple RPR Architecture...26
Figure 2.8 Bit Significance Distribution Curve...28
Figure 2.9 AND Function Map for 3-Bit, 2-Bit and 1-Bit Input Vectors32
Figure 2.10 Hypothetical Multi-Function Map ...33
Figure 2.11 Clustering for 2-Bit and 3-Bit Representations of Integers34
Figure 2.12 RPR Suitability Flowchart ...35
Figure 3.1 Example of Glitching Behavior ...51
Figure 4.1 Hypothetical Cost Curves ..60
Figure 4.2 Hypothetical Benefit Curves..62
Figure 4.3 Hypothetical Functional Behavior of TPM Components69
Figure 4.4 Hypothetical Benefit Curves..73
Figure 4.5 Conceptual Reliability Isocurves within Cost-Benefit Design Space..............77
Figure 4.6 SEU Rates for Notional 64 Mbit Memory (from [17])....................................81
Figure 4.7 Typical Altitude Variation of SEU Rates for 60° Orbit (from [17])83
Figure 4.8 Hypothetical TMR circuit (left) and RPR circuit (right)86
Figure 5.1 Vector Rotation in 2 Dimensions...94
Figure 5.2 True Rotation (left) versus Pseudorotation (right)...95
Figure 5.3 Iterative CORDIC Hardware Configuration..97
Figure 5.4 General RPR Configuration...101
Figure 6.1 SEU Simulator Configuration with CFTP Hardware106
Figure 6.2 Layout for “Davis TMR” Circuit ...109
Figure 6.3 Layout for “Davis RPR” Circuit ..110
Figure 6.4 Layout for “Unprotected” Circuits...111
Figure 6.5 Layout for “Improved TMR” Circuits ...112
Figure 6.6 Layout for “Improved RPR” Circuits ..113
Figure 6.7 Histogram of Error Counts for Sensitive Bits in “Davis TMR” Circuit115
Figure 6.8 Detected Sensitive Bit Locations (left) vs. Circuit Layout (right) for

“Davis TMR”...117
Figure 6.9 Power Simulation Process Flowchart ..123
Figure 6.10 Scatter Plot of Power Consumption vs. Circuit Size128
Figure 7.1 Hardware Configuration “C1” ...133
Figure 7.2 Radiation Beam Test Procedure...135
Figure 7.3 SEU Profile for Run 4 (C1 Hardware)...140
Figure 7.4 SEU Profile for Run 10 (C2 Hardware)...141
Figure 7.5 Locations of Sensitive Bits (Simulator, black) and SEUs (Radiation, red) ...148
Figure 7.6 Correlation of Sensitive Bit (green) from Simulator and Radiation149
Figure 8.1 Upper/Lower Bounds for Sine Function..156

xii

Figure 8.2 Upper/Lower Bounds in Vicinity of Stationary Points..................................158
Figure 8.3 Architecture for Calculating Precise and Upper/Lower Bounds Solutions ...159
Figure 8.4 Approximating Sine Function at Three Sample Points..................................162
Figure 8.5 Generating Lookup Table Error Bounds for Arbitrary Functions165
Figure 8.6 Possible Error Conditions in RPR..166
Figure 8.7 Pseudo-code for RPR Voter...167
Figure 8.8 Basis Functions for 8x8 DCT ..171
Figure 8.9 “Baboon” Image with Temporary Failure of DCT Processor174
Figure 8.10 “Gold Hill” Difference Image..175
Figure 8.11 “Gold Hill” Image with Temporary Imprecision in DCT Processor176
Figure 8.12 Detail of “Gold Hill” Image with Temporary Imprecision in DCT

Processor ..177
Figure 8.13 “Lena” Image with Persistent Imprecision in DCT Processor.......................179
Figure 8.14 Detail of “Lena” Image with Persistent Imprecision in DCT Processor180
Figure 8.15 Benefit Value Functions for Reliability and Precision Factors183
Figure 8.16 Relationship Between Precision and Reliability TPM Factors......................184
Figure A.1 32-Bit CORDIC Processor Schematic ...197
Figure A.2 Layout of TMR 32-Bit CORDIC on Virtex XQVR600199

xiii

LIST OF TABLES

Table 2.1 Approximation Methods for 4-Input Sum Calculation....................................29
Table 2.2 Approximation Methods for 3-Input Product Calculation...............................29
Table 2.3 Hypothetical Outputs from 3-Modular and 5-Modular Redundancy41
Table 2.4 Example Relationship Between Alternative Numerical Approximations42
Table 4.1 Possible Cost/Benefit Prioritization Schemes..69
Table 4.2 Hypothetical TPM for Various Design Points ...71
Table 4.3 Example Cost/Benefit Relative Weighting Factors ...72
Table 5.1 Pseudorotation Angles for Circular CORDIC Modes96
Table 5.2 Example Error Propagation in Iterative CORDIC...99
Table 5.3 Example Error Propagation in Pipelined CORDIC100
Table 5.4 Example Response of Iterative TMR and RPR Designs102
Table 5.5 Example Response of Pipelined TMR and RPR Designs..............................103
Table 6.1 SEU Simulator Results for Uncorrected Errors ...114
Table 6.2 SEU Simulator Results for Masked Errors ..116
Table 6.3 Power Estimates for Unprotected 32-bit Iterative CORDIC Circuit124
Table 6.4 Power Estimates from XPower..125
Table 6.5 Power Estimates for Modified 16-bit CORDIC Circuits...............................127
Table 6.6 Dynamic Power Inferred from Power Gradient...127
Table 7.1 Names and Descriptions of Test Circuits...134
Table 7.2 Summary of Radiation Test Results ..137
Table 7.3 Fluence-to-Upset by Test Circuit...138
Table 7.4 Comparison of Observed SEU Polarity and Bitstream Values......................143
Table 7.5 Example of Manually Verifying SEU Effects ...147
Table 7.6 Summary of Radiation Test Results ..152
Table 8.1 Initial Attempt at Generating Lookup Tables for Sine Function

Approximation ...162
Table 8.2 Fixed-Point Two’s Complement Number Formats for Example in Figure

8.4...163
Table 8.3 Improved Lookup Table Entries for Sine Function Approximation..............163
Table 8.4 Image Metrics for Figure 8.9-Figure 8.13 ...181
Table A.1 Fixed-Point Two’s Complement Number Formats for 32-Bit CORDIC.......196
Table A.2 CORDIC Circuit Sizes and Speeds on Virtex XQVR600206

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC – Application Specific Integrated Circuit

CED – Concurrent Error Detection

CFTP – Configurable Fault Tolerant Processor

CMOS – Complementary Metal-Oxide-Semiconductor

CORDIC – COordinate Rotation DIgital Computer

CPLD – Complex Programmable Logic Device

DCT – Discrete Cosine Transform

DSP – Digital Signal Processing

EDAC – Error Detection And Correction

EEPROM – Electrically Erasable Programmable Read-Only Memory

EPROM – Erasable Programmable Read-Only Memory

FPGA – Field-Programmable Gate Array

FSM – Finite State Machine

GAL – Generic Array Logic

LSB – Least Significant Bit

LUT – Look-Up Table

MBU – Multiple Bit Upset

MSB – Most Significant Bit

MTBE – Mean Time Between Error

PAL – Programmable Array Logic

PLA – Programmable Logic Array

PLD – Programmable Logic Device

PROM – Programmable Read-Only Memory

SEE – Single Event Effect

SET – Single Event Transient

SEU – Single Event Upset

SRAM – Static Random Access Memory

TMR – Triple Modular Redundancy

VLSI – Very Large Scale Integration

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I am eternally grateful for the love, encouragement, and support of my wife,

Melissa. An amazing woman, wife, and mother, she made it possible for me to complete

this dissertation. As I’m sure she knows, I could not have done this without her. As I

hope she knows, my love and thanks for her is everlasting.

Melissa and I are blessed to have three wonderful children, Katie, Ben, and Matt.

I thank them for bringing such joy and meaning to our lives. Their energy and

enthusiasm towards life is infectious. We are so proud of all their accomplishments and

their positive attitude. May they continue to grow and blossom.

I could not have asked for a better dissertation committee, from whom I learned

so much. Professors Hersch Loomis, Alan Ross, Jon Butler, Doug Fouts, and Sherif

Michael each contributed their unique perspectives and experiences to make my

education at NPS extremely rewarding. While pushing for excellence, they all were

sincerely committed to helping me succeed. I want to especially thank Professors

Loomis and Ross, whose passion for advancing our nation’s space program has inspired

me and countless others towards ambitious goals.

Many other individuals were instrumental in the success of this research.

Through her hard work and persistence, Mindy Surratt from the Naval Research Lab was

absolutely essential in making the CFTP program at NPS a reality and enabling my work

with actual hardware. I thank her for her amazing dedication, professionalism, and sense

of humor as we spent many, many hours staring at computer screens full of ones and

zeros. I want to thank my fellow classmate, Tim Meehan, for his advice, encouragement,

and assistance. By lending his expertise to the CFTP team, his efforts were also critical

to the success of this work. I also want to thank David Rigmaiden and Jim Horning for

their efforts in making CFTP a reality.

Finally, I would like to thank my parents, Dave and Julie, for their constant

support over the years and for encouraging me in all my endeavors. Without them, I

know my life’s path would not have led to where I am now.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

EXECUTIVE SUMMARY

Spacecraft computers must operate reliably despite their harsh radiation

environment. High-energy protons and other radiation sources cause permanent damage

to electrical components as well as transient faults in circuits. Although technologies

exist for producing “radiation hardened” devices that are less vulnerable to permanent

damage, modern digital electronics are very susceptible to transient errors.

One of the most common manifestations of transient errors is called a single event

upset (SEU), or “soft error.” This research investigates SEU fault tolerance for a

relatively new hardware technology known as field-programmable gate array (FPGA).

Due to their unique design, FPGAs require innovative approaches to fault tolerance.

Triple modular redundancy (TMR) is commonly used to ensure reliable operation.

However, TMR is very costly in terms of chip area and power consumption. This

research develops SEU fault-tolerant solutions that use less power than TMR.

This dissertation presents a new fault-tolerant architecture for FPGA circuits

called reduced precision redundancy (RPR). RPR is suitable for protecting FPGA

circuits on spacecraft against SEUs and achieves improved efficiency by applying

redundancy in only the most numerically significant portions of a circuit. This concept,

though based on ideas from software engineering, is unique within the FPGA fault-

tolerant community. RPR is fundamentally different than TMR because it recognizes

that the individual output data bits from a numerical computation often have varying

levels of importance. RPR is designed to protect only the most significant data bits,

thereby avoiding numerically large data errors. This research shows that the RPR

architecture consumes much less chip area and power than TMR designs. In fault-free

conditions it provides full-precision results, but when SEUs affect the circuit it produces

lower-precision, yet acceptable, output data.

Another unique concept presented in this dissertation is the development of a total

performance metric (TPM) for optimizing a system based on numerous performance

criteria. The idea behind TPM is that each design parameter (e.g., speed, reliability, size,

power, etc.) can be grouped as either a cost or a benefit. These cost and benefit factors

xx

are then related to one another through scaling factors that represent the relative

importance of each parameter. This results in a quantitative method for determining an

optimal design solution by maximizing the total benefit minus cost.

This research explores the effectiveness of the TMR and RPR architectures by

developing and testing circuits on actual FPGA devices. Most of this work is performed

with implementations of the Coordinate Rotation Digital Computer (CORDIC) algorithm

targeted for the Xilinx Virtex XQVR600, though some tests utilize the Virtex-II

XC2V6000 device. The XQVR600 devices tested are part of the NPS Configurable Fault

Tolerant Processor (CFTP) space experiment. Results of high-energy proton radiation

testing with the CORDIC and other circuits are presented. In addition to proton testing,

an automated SEU simulation system is developed, enabling detailed and comprehensive

studies of SEU effects without requiring actual radiation sources. This simulator is used

to characterize the SEU tolerance of TMR and RPR versions of the CORDIC circuits.

Although TMR masks faults affecting any of the output data bits, RPR is designed to

ensure accuracy of the most significant bits of the output data. In terms of these two

distinct goals, the RPR designs tested here are +/- 30% as effective as the TMR designs.

In addition, power simulations are performed to determine the power cost of

implementing TMR and RPR architectures. Though the relative power usage of RPR and

TMR depends on many factors, such as the level of precision incorporated into the RPR

calculations, the CORDIC circuits tested here show that TMR requires between two and

three times as much power. The substantial power savings possible with RPR is

justification for accepting some degradation in SEU immunity and/or numerical

precision.

Finally, image processing with the discrete cosine transform (DCT) is used as an

example application for studying the effects of SEU-induced data errors and imprecision

in numerical calculations. Subjective and objective image quality assessments are used

to judge the relative importance of preventing errors and maintaining high precision.

This image processing example demonstrates that decreased precision in an RPR design

causes little performance loss. Thus, it is concluded that RPR is an efficient method for

achieving SEU tolerance in FPGA circuits.

1

I. INTRODUCTION

A. OVERVIEW
Over the past decade the tremendous advances in reconfigurable circuit

technologies have spurred considerable interest in using devices such as field-

programmable gate arrays (FPGAs) on spacecraft [1], [2], [3]. Although radiation effects

are a concern when dealing with any spacecraft electronic system, they are especially

troublesome for certain FPGA technologies [1], [4], [5]. In the last several years, an

increased awareness of FPGA radiation susceptibilities has spurred development of

various mitigation methods, which have proved to be quite effective [5], [6], [7], [8].

However, most of this work has not considered the impact of these methods on a

system’s power consumption. Power is also an important concern for spacecraft

computing and FPGAs generally require more power than application specific integrated

circuits (ASICs) to perform comparable functions [9], [10]. Radiation susceptibility and

power consumption are impediments to the widescale use of FPGAs for spacecraft [3],

[9], [10]. This dissertation investigates a new technique for mitigating radiation effects

while minimizing the impact on a spacecraft’s power budget. The methods proposed in

this research offer substantial benefits for various computing problems for both FPGA

and non-FPGA systems.

B. BACKGROUND

1. Computing In the Space Environment
Since the launch of Sputnik I/II in 1957 and Explorer I in 1958, satellites have

grown tremendously in importance for both military and civil uses. Satellites are widely

used in communications, navigation, weather monitoring, earth remote sensing, missile

warning, and many other applications. Computers are an integral part of all spacecraft.

Although the earliest spacecraft were simpler and much less capable than today’s

spacecraft, even the first satellites had rudimentary computing systems. By 1962 NASA

was developing rather sophisticated computer systems for their space projects [11].

Virtually all satellites require some on-board processing capability, whether for complex

data processing or simple satellite control functions.

2

The demand for satellites with increasingly complex functionality creates a need

for greater on-board computer processing capacity [12]. For many spacecraft, the amount

of data collected by on-board sensors greatly exceeds the available downlink bandwidth

[13]. In data-intensive applications, such as synthetic aperture and imaging radars, the

ability to process large amounts of raw data can significantly reduce the downlink

requirements [14], [15]. A prime example demonstrating the benefits of on-board

processing is Los Alamos National Lab’s current Cibola spacecraft program [16]. A

primary mission of the Cibola spacecraft is to analyze lightning events using a

reconfigurable radio operating at VHF and UHF frequencies. This system requires 2.4

Gbps processing capacity, which is achieved using 9 Virtex XQVR1000 FPGAs

operating in parallel on the spacecraft [2]. If all data processing were performed on the

ground, it would be extremely difficult to support downlink of the raw data at such high

speeds. In fact, Cibola’s downlink capabilities are limited to 38.4 kbps and 4 Mbps links,

far less than the 2.4 Gbps raw datastream. Furthermore, on-board processing enables

persistent global coverage since the finished data products will likely be small enough to

store on-board in between direct line-of-sight communication periods, whereas the raw

data is far too voluminous for on-board storage. In this and many other modern space-

based missions, spacecraft processing is absolutely vital.

The tremendous cost of launching systems into space imposes stringent design

constraints on the size, weight, and power of satellites. Satellites must operate remotely

for long periods of time. High reliability is essential, as most are not serviceable after

launch (the Hubble Space Telescope is the most noteworthy exception). These

challenges, common to all spacecraft, contribute to long development schedules and high

costs. Due to the large investments associated with spacecraft programs, there is

tremendous pressure to make the systems highly reliable. This need for reliability

lengthens the procurement process and further drives up the costs, perpetuating the cycle.

In addition, these factors create an obsolescence problem. By the time a satellite is ready

to launch, technology has advanced far beyond what is integrated into the satellite. By

using out-dated technology, satellite programs also suffer from a lack of commercial

support for obsolete equipment and spare parts.

3

The space environment also presents considerable challenges to spacecraft

electronics. Modern electronic systems, and computers in particular, are sensitive to the

high radiation levels in space. In the early days of spacecraft computing, there was little

concern about radiation effects. For example, a 1966 paper acknowledged the potential

hazards of the space environment but concluded that, “data have shown no errors that

could be attributed to interference from outside the spacecraft.” [13] However, as solid

state electronics rapidly advanced in capabilities and shrank in physical dimensions,

radiation effects became an issue for computer systems. By 1975 there was some limited

evidence of radiation-induced computer faults on spacecraft. By 1978 such effects were

even observed in some terrestrial systems and the radiation effects community began in

earnest to explore this phenomenology [17].

Radiation sources, such as highly energetic particles trapped in the earth’s

magnetosphere, can cause permanent damage to electrical components as well as

transient faults in circuits. Permanent damage to electronic devices can result from

various physical phenomena, but is primarily caused by accumulation of trapped charges

from ionizing radiation and atomic displacement from non-ionizing radiation [17].

Temporary effects are primarily caused by energetic particles that locally generate a large

number of excess charges in a device and thereby affect signal values in a circuit [17],

[18]. Spacecraft computer systems must operate reliably in spite of these challenges.

2. Single Event Upset (SEU)
Spacecraft electronics are exposed to substantially more damaging radiation than

terrestrial systems, which are protected in large part by the earth’s atmosphere and

magnetosphere [17]. This radiation can lead to both permanent and temporary effects.

While protecting electronics against permanent damage is very important, this research

focuses on temporary effects. The majority of temporary, non-persistent perturbations in

spacecraft electronics occur nearly instantaneously and are caused by individual high-

energy particles that affect a localized region in the semiconductor device. The term

“single-event-transient” describes these rapid and isolated events.

Single-event-transient (SET) effects, such as the well-known single event upset

(SEU), can be caused by any undesirable energy source, such as corpuscular radiation or

4

electromagnetic interference. Clark [19] presents succinct definitions of SET and SEU:

“SET…is an unintended analog pulse” and “SEU occurs when an SET causes a bit-flip

error in a memory element.” SET describes a physical process that occurs in an electrical

circuit. Depending on many factors, such as circuit design and precise timing of SET

events, this process may or may not lead to an SEU. Similarly, an SEU may or may not

lead to erroneous data at the system output [19]. This research is primarily concerned not

with the physical causes and effects of SETs, but rather with the consequences of SEUs

on logic circuits.

Transient faults are also commonly called Single Event Effects (SEEs) [3].

Within the category of SEE, some researchers differentiate between a Single Event

Functional Interrupt (SEFI), which causes the device to “lock-up” and cease functioning

until a complete reset or power-cycling is performed [3], [5], and an SEU, which causes a

bit-flip. For simplicity and consistency with most of the literature, the term SEU

henceforth refers to all transient-induced logic faults.

SEUs are a serious concern for space systems. Exposure to high radiation levels

leads to SEUs in spacecraft computers that can cause erroneous results. Without

mitigation of SEUs, the consequences of such errors can range from relatively benign

data errors to catastrophic effects such as loss of satellite control and functionality [3],

[20]. Considerable effort is spent to mitigate SEUs in modern satellite systems through

techniques such as shielding, error detecting and correcting codes, and hardware

redundancy.

Concern over SEUs and their impact is not limited to spacecraft systems. In fact,

there is growing concern that terrestrial computers are becoming more prone to radiation-

induced faults. Demand for high-performance processing capabilities drives

requirements for smaller and more sophisticated computers. Many of the factors that

improve computing performance also make state-of-the-art systems increasingly sensitive

to even low levels of radiation [17], [21]. Alpha particle radiation from naturally

occurring radioactivity in packaging material has long been known to cause SEUs, also

known as “soft errors” [17]. Shrinking integrated circuit feature sizes, operating voltages

and noise margins exacerbate the SEU problem. Thus, logic upsets caused by alpha

5

particles, cosmic rays and other radiation sources are becoming more of a concern for

ground-based commercial systems [21], [22].

Therefore, technologies are needed to ensure that both spaceborne and terrestrial

computers can be highly reliable and still meet their speed, size, weight, power, cost and

other design constraints. Techniques that improve the SEU immunity of electronics are

of significant value in military, civilian, and commercial applications. Increasingly, SEU

tolerance is becoming a common feature for many digital systems.

3. Field-Programmable Gate Array (FPGA)
Reconfigurable circuit technology is revolutionizing the computing industry.

Traditionally, hardware consisted of fixed circuit configurations and software provided

much of a system’s design flexibility. Modern configurable logic structures allow

hardware circuits to be reconfigured post-production and even during operation.

Programmable logic devices (PLDs) first appeared in the 1970s with the introduction of

the PAL and quickly evolved into numerous products with names such as PLA, GAL,

PROM, EPROM, and EEPROM [23]. However, these earlier technologies had limited

utility because they offered relatively small gate counts, had fixed interconnect structures,

and were typically only one-time programmable. The advent of FPGAs in 1985 [24]

established a configurable circuit technology that could perform even complex functions

and maintain great flexibility. The most distinguishing traits of FPGAs compared to

other technologies are their relatively large numbers of logic gates and very flexible

interconnect architecture. FPGAs have benefited from rapid advances in VLSI

technologies and now rival ASIC and general purpose microprocessors in numerous

applications [25].

The tremendous advantages of reconfigurable circuits have prompted great

interest from the space computing community. The first published description of an

FPGA used in space concerned the SAMPEX spacecraft, launched in 1992 [26].

Although the earliest FPGA devices were built for one-time programmability, there is

now more demand for reprogrammable devices, such as those using Static Random

Access Memory (SRAM) cells for storing the circuit configuration. Other technologies

are also widely used to construct FPGAs. For example, anti-fuse devices are configured

6

by applying high-voltage to selected nodes in order to change them from their initial

high-impedance state to a low-impedance “fused” state, in much the same way as

PROMs are programmed. Spacecraft have used anti-fuse FPGAs for many years and

have recently begun to utilize SRAM-based devices [3]. This research focuses on the

SRAM devices and does not address those using anti-fuse and similar one-time

programmable technologies. Thus, throughout this dissertation the term FPGA implies

SRAM-based devices only. Over time, these devices will likely gain broader acceptance

and become standard components for on-board computing.

The flexibility of SRAM-based FPGAs offers numerous advantages. First, a

single FPGA device can perform multiple hardware functions that would otherwise

require multiple devices. By loading different circuit designs onto the chip when needed,

one can achieve broad functionality with fewer parts than conventional systems. In

SRAM-based devices this switching back and forth among configurations can be

accomplished very quickly, on the order of a millisecond. Another key advantage is the

ability to correct design deficiencies, compensate for permanent hardware failures, and

make enhancements long after system deployment. Software and hardware are prone to

design errors or oversights (“bugs”). Design errors are sometimes discovered long after

initial production. For example, NASA’s Cassini-Huygens mission to Saturn contained a

critical communication design flaw that wasn’t discovered until the probe was over

430,000,000 km from earth [27]. An oversight related to the Doppler-shifted datastream

coming from the Huygens probe during descent towards the moon Titan would have

caused the Cassini spacecraft to receive only a scrambled version of the data. While

minor changes to on-board firmware could have fixed this problem, the only option after

launch was to redesign the spacecrafts’ flight paths, thereby losing some of the mission’s

scientific value, to minimize the Doppler effect. With FPGAs, the hardware can easily be

reconfigured even after launch to correct or compensate for any such problems.

Unfortunately, reconfigurable SRAM-based FPGAs are susceptible to SEUs.

SEUs can cause data bit upsets, as in other circuit technologies, but can also affect circuit

operation since the circuit configuration is stored in volatile memory. Thus, fault-tolerant

schemes for FPGA circuits must compensate for both data and configuration memory

7

upsets. Error detection is an important aspect of the fault-tolerant designs explored in

this research, as it enables the correction of both types of upsets.

When FPGAs, or the systems in which they are used, experience permanent

physical damage, the FPGAs can be reprogrammed to avoid the faulty components [28].

For example, faults within the FPGA can be circumvented by rerouting the circuit.

Furthermore, the I/O pins or the circuit behavior within the FPGA can be modified to

compensate for problems outside the FPGA. This reprogrammability also allows for

future improvements to the algorithms and design. The popularity of spiral development

(the process by which a system is fully developed over several product generations with

ever-increasing capabilities) in high-tech programs indicates that this feature of FPGA-

based systems has tremendous value. In addition, FPGAs can accelerate development

time compared to the traditional approach of building custom ASIC chips for complex

electronic systems. FPGAs can be readily purchased on the commercial market but can

be fully customized when assembled into the full system.

4. Power Consumption
Power-efficiency in electronic systems is becoming increasingly important as

computers find more applications in small and power-limited systems, such as cell

phones and smart cards [29]. Power consumption also presents thermal issues related to

heat dissipation in devices both very small (like laptop computers) and very large (such

as mainframe supercomputers) [30]. Especially in the rapidly growing portable

electronics industry, there is considerable interest in developing energy efficient designs

[31]. One of the reasons that FPGAs have not supplanted ASICs more quickly is that

they typically use significantly more power [10].

Power generation and energy storage are significant limitations in remote systems

like spacecraft. Virtually all current satellites use solar cells for power generation. These

power sources are limited by the collection area available for body or panel-mounted

solar cells. Even on large spacecraft such as the International Space Station with

hundreds of square meters of solar panels, power is limited to 10’s of kilowatts. The

most powerful commercial satellites produce roughly 20 kW, but small satellites such as

8

NPSAT have power budgets of only 10s of watts that must be shared among the various

subsystems. Spacecraft electronics must be specifically designed for these extremely

low-power conditions.

Spacecraft typically use batteries for energy storage, though momentum wheels

and other technologies have been investigated. Issues with energy storage methods

include total capacity, conversion efficiency, peak discharge rate and longevity. For

example, the battery system on PANSAT, the first satellite built at NPS, was the first

major subsystem to fail, thereby cutting short the lifetime of this otherwise healthy

satellite [32].

Thermal dissipation is also a major concern because common cooling techniques,

such as convection with fan-driven airflow, do not work in the vacuum of space. In

addition, the temperature cycles that many spacecraft undergo due to fluctuating solar

illumination further complicate the thermal balance inside spacecraft. Removing heat

from high-temperature computer chips on satellites often requires considerable effort.

For example, careful thermal design was needed on the Cibola spacecraft to provide heat

dissipation for several FPGAs consuming over 7 watts each [33].

C. MOTIVATION
Spacecraft computers face the unique challenge of operating with a limited power

budget and functioning reliably in a high radiation environment. Numerous studies have

examined trade-offs between size vs. speed, fault tolerance vs. size, power vs. speed,

power vs. size, etc., for specific computation problems [34], [35], [36], [37], [38].

Relatively little research has been done to examine power efficiency in fault-tolerant

architectures. Traditional approaches to fault tolerance assume that reliability is

paramount and power consumption is a secondary concern [21]. However, Maheshwari

[29] identifies both fault tolerance and low-power as “key objectives in the design of

critical embedded systems.” Another research team [4] suggests that in some

applications it may be beneficial to trade off reliability for power. This research explores

these design trade-offs and presents a new approach for achieving high system reliability

using minimal power.

9

Several key observations inspired this research project. First, SRAM-based

FPGAs, which offer great advantages for space computing, have unique failure

mechanisms that render many common fault-mitigation techniques ineffective [4].

Power is a major limitation in spacecraft computing, making reduced power consumption

an important design goal. Triple Module Redundancy (TMR), the most common fault-

tolerant technique for FPGAs, is very costly and is wasteful in many applications.

Finally, many computational tasks can accept “flexible precision” without significant

degradation. This dissertation proposes a unique computing architecture called Reduced

Precision Redundancy that is suitable for FPGAs and provides sufficient fault tolerance

with minimal power consumption.

D. CONTRIBUTIONS
The primary contribution of this dissertation is the development of a new fault-

tolerant architecture for FPGAs called Reduced Precision Redundancy (RPR). This new

architecture can be applied to a variety of computational tasks and minimizes the cost of

hardware fault tolerance. RPR is unique because it applies software-based fault tolerance

concepts in a hardware fault-tolerant structure. While other methods exist for building

hardware fault tolerance with reduced overhead costs, RPR is unique because it prevents

large data errors from propagating through the system. Other low-cost approaches permit

large and small data errors with equal likelihood.

Second, this dissertation demonstrates that RPR generally provides better overall

performance than TMR, considering both benefits (performance, reliability, etc.) and

costs (chip area, power, etc.). This research develops unique methods for determining the

optimal balance between fault tolerance and resource usage.

Third, this research produces a validated process for assessing SEU fault tolerance

of RPR and other designs implemented on the Configurable Fault Tolerant Processor

(CFTP) experiment’s Xilinx XQVR600 devices. CFTP is an active research project at

the Naval Postgraduate School (NPS) that is building two space experiments as part of a

program investigating reliable and reconfigurable computing. Part of this dissertation

involved expanding the capabilities of an SEU simulation system developed at the Naval

10

Postgraduate School, enabling rapid and complete characterization of specific circuit

designs. Live testing at a radiation test facility validated the simulation system. Finally,

analytical methods were developed for assessing the severity of various error conditions

in an RPR architecture.

E. DISSERTATION ORGANIZATION
Chapter II presents background material on fault tolerance for FPGAs and

introduces the RPR architecture. The chapter describes the characteristics of algorithms

and applications that are well suited for use with RPR. Chapter III describes approaches

for reducing electrical power consumption in FPGA designs. Chapter IV develops a

quantitative method for determining how to best achieve a low-power and fault tolerant

system. While the focus of this research is on SEU fault tolerance and power

consumption, the methodology is flexible and can be expanded to address a multitude of

competing design goals. Chapter V briefly describes the CORDIC algorithm and why it

was used as the primary demonstration system in this research. Chapter VI describes

the SEU and power simulation environments and provides accurate predictions of RPR

performance in radiation environments. Chapter VII describes the proton radiation

testing performed to validate the SEU simulation environment of Chapter VI. Chapter

VIII discusses some practical issues that must be addressed when creating an RPR

circuit. The chapter also examines an image compression problem as a case study for

demonstrating the viability of RPR. Chapter IX summarizes the dissertation and

identifies areas for further investigation.

11

II. FAULT-TOLERANT DESIGN CONCEPTS

A. FAULT TOLERANCE FOR FPGAS
Parhami defines fault-tolerant computing as “ensuring correct functioning of

digital systems in the presence of (permanent and transient) faults” [30]. For the

purposes of this dissertation, it is important to distinguish between faults and errors.

Faults are the undesired changes that occur in a physical circuit/device that may lead to

incorrect operation. Errors occur when a circuit produces incorrect output data [39].

Faults, though undesirable, are not necessarily harmful. Our intent is to prevent errors by

properly managing faults.

This research focuses on developing fault-tolerant techniques for FPGAs.

Although computer fault tolerance in various forms has been investigated for over six

decades [40], FPGAs have several unique features that necessitate new fault-tolerant

methods for these increasingly important devices [41]. FPGAs used in spacecraft face

additional challenges unique to the hostile operating environment of space.

Although FPGAs have only become widely used in the last decade, there has been

substantial research and development in fault-tolerant techniques for these devices.

While it is important to consider all potential sources of faults when designing high-

reliability systems, this research focuses specifically on faults from SEUs and does not

consider other failure mechanisms such as device burnout and power supply glitches.

In SRAM FPGA technology, both the data being processed and the circuit

function itself are stored in memory elements. An SEU can flip a data bit, corrupting a

portion of the data stream, or it can flip a configuration bit, causing the circuit to no

longer behave in the intended manner [42]. Errors in an FPGA’s configuration memory

can modify the circuit functionality and produce incorrect results, even if the stored data

bits are correct. Errors affecting circuit function, which are extremely disruptive, occur

more frequently in modern FPGAs than data errors. One study of the Virtex chips

concluded that 91% of static upsets (i.e., those observed without a clocking signal) were

attributable to the “configuration” bits stored on the device [43]. The authors in [3] note

that user data latches comprise a relatively small percentage of SRAM latches in the

12

Xilinx 4000 chips and point to a test that found roughly 80 configuration upsets for each

user data upset. Configuration errors are the primary concern for this research, although

protection against data errors is an important secondary objective.

Conventional fault mitigation techniques are insufficient for dealing with the

broad range of possible faults in FPGAs [4]. Fault models such as “single signal stuck-

at-0/1” and “stuck-open” do not adequately address the wide variety of possible

malfunctions in FPGA circuits [44], [45]. Error detection and correction (EDAC) codes

such as Hamming codes are effective for detecting and correcting small numbers of data

errors in storage or transmission and to a limited extent in processing. Such codes are

extensively used in digital memory chips and communication systems. However,

configuration errors in FPGAs can easily exceed the capability of EDAC techniques.

FPGA designs require unique solutions that provide fault tolerance against a wide range

of potential data and configuration fault conditions.

B. PRINCIPLES OF FAULT TOLERANCE

1. Fault/Error Detection vs. Correction
The first step towards fault-tolerant systems is fault and/or error detection.

Without some means of determining that a fault exists in a circuit, there is no way of

fixing that fault or performing error correction. In some situations it may be acceptable

to simply identify the presence of faults or errors. For example, if only a few data

samples in a sensor datastream are corrupted, one solution may be to simply flag errors

and then discard the bad data. In other situations, the data is too critical to be discarded

and must be corrected, either in real-time or in post-processing. Error correction is more

difficult, but fundamentally relies on fault/error detection.

2. Concurrent Error Detection and Checkpointing
Concurrent error detection (CED) involves the discovery of faults/errors as part of

the data computation process. The goal with CED is for the circuit to flag errors before

incorrect data is propagated through the system, thus maintaining “data integrity” [46].

CED “is designed to detect the first error produced by a failure in the system and is

therefore capable of detecting permanent and transient faults.” [47] For hardware fault

13

tolerance, spatial redundancy with result checking is typically used, as shown in Figure

2.1. A common technique is a duplex system in which two modules compute the same

function and the results are compared for equality. A mismatch in the comparator signals

that one of the modules (or the comparator) is faulty; thus providing fault detection but

not error correction. Temporal redundancy can also be used, however this adds

considerable latency and often reduces system performance. Most common fault-tolerant

methods, such as TMR, are variants of the basic CED structure. CED is an implicit

feature of the fault-tolerant designs explored later in this dissertation.

Figure 2.1 Basic Concurrent Error Detection (CED) Architecture (from [46])

Another technique that is common in software engineering, called

“checkpointing” (or “roll-back and recompute”), applies an acceptance test verifying that

each output is valid before passing on the result. This acceptance test is based on some a

priori knowledge of the function being calculated or properties of allowable outputs. If

an output is invalid, the processor “rolls back” and repeats the calculation using the

original input. This is in contrast to CED in which the process “rolls forward” when

faults are detected instead of recomputing the original inputs.

Checkpointing is popular in software designs, in part because it only requires a

single processing element (usually the microprocessor) and enough memory to store the

14

system’s state between checkpoints. However, checkpointing alone is not capable of

correcting SEU faults in FPGAs. As discussed earlier, the majority of SEU-induced

faults affect configuration memory. Configuration faults persist until the device is

reconfigured to correct these faults. Simply repeating the same calculation, as in

conventional checkpointing, would only continue to produce erroneous results.

Both CED and checkpointing methods lack fault correction, a crucial element for

SEU fault tolerance in FPGAs. Because FPGA configuration faults are both common

and persistent, a means of removing such faults is essential [42]. The process of finding

and fixing these faults is often called “configuration scrubbing,” or simply “scrubbing.”

3. Configuration Scrubbing
Configuration scrubbing can be described as “the transparent process of reloading

the configuration bitstream so upsets are corrected.” [48] In its simplest form, scrubbing

involves periodic reconfiguration of the entire device to restore the chip to the desired

configuration, regardless of whether or not any SEU faults exist [42], [49]. More

sophisticated methods involve refreshing the configuration memory contents only when

cued by some fault/error detector. For example, the NPS Configurable Fault Tolerant

Processor (CFTP) approach involves periodic reading of the configuration memory and

only reloading the content when sensitive bit upsets (i.e., error producing configuration

faults) or a certain number of non-sensitive upsets are detected. In this context, the term

configuration scrubbing includes both the reading and reloading functions.

In conventional systems, this scrubbing process involves downtime while the

device is reconfigured. While this can degrade overall performance, modern Xilinx

Virtex devices support a mode called “active reconfiguration” that permits the reading

and writing of configuration bits concurrently with regular device operation. The

frequency of such a process might be determined based on an expected upset rate

(number of upsets per second) or simply based on the fastest possible reconfiguration

speed for the device (bits per second). Faster reconfiguration is desirable since it

minimizes the time during which output errors might persist, but continuous

configuration scrubbing will consume additional power. The minimum scrubbing cycle

duration is determined by the speed of reading/writing configuration bits and the size of

15

the circuit to be scrubbed. More sophisticated scrubbing techniques involve fault

isolation to determine which specific portions of the chip require repair. By pinpointing

faults, the scrubbing process can be sped up considerably while minimizing power

consumption.

4. Redundancy
Redundancy is essential for fault tolerance. Without redundancy, a system’s

reliability is limited by the product of the individual reliabilities of each subcomponent,

as shown in Equation 2.1 [50]. In this equation Ri represents the probability that

subcomponent i will function correctly at any given time. This equation applies to

systems in which components are connected in a serial fashion. Like the links in a chain,

failure of a single component can cause the entire system to fail.

 () ()∏=
=

N

i
i tRtR

1
 (2.1)

When a system’s components are replicated and properly integrated in a parallel

style, a failure in one component can be “masked” by redundant elements that continue to

function properly. This parallel structure can dramatically improve reliability as shown

in Equation 2.2 [50].

 () ()[]∏ −−=
=

N

i
i tRtR

1
11 (2.2)

Figure 2.2 illustrates how these reliability functions depend strongly on the values

of N and Ri. The graph on the left shows how the overall reliability of a system of several

components configured in a serial manner degrades rapidly as N increases. Each curve

represents a different individual component reliability, ranging from 0.91 to 0.99. In

order to construct highly reliable complex systems with many subcomponents, each

component must be very reliable. The graph on the right shows how a system with 10

components (using the rightmost data points on the left graph as the baseline reliability)

can be made more reliable through parallel redundancy. Note that for the upper curve

with double or greater redundancy, the “system of systems” is more reliable (>0.991)

than any single component by itself (0.99).

16

Figure 2.2 Reliability of Serial Systems (left) and Parallel Redundant Systems (right)

Reliability of computer systems can be improved through spatial redundancy,

temporal redundancy, or a combination of the two. Spatial redundancy is the most

common means of enhancing hardware reliability. It can be applied at a top level by

replicating the entire system or at lower levels by replicating subcomponents. EDAC

techniques are a type of spatial redundancy that primarily resolve data errors. Triple

modular redundancy is a common method used for masking both logic and memory

faults. Temporal redundancy consists of multiple calculations that are performed in a

time sequence before a final result is determined. The checkpointing technique described

earlier is a form of temporal redundancy.

a. Configuring Redundant Components
Another important observation is that redundancy is most effective when

applied at the lowest possible level in a system. The following figure shows two possible

arrangements for a double redundant system with 5 serial elements. The first

configuration uses redundancy at the highest level with the entire system duplicated. The

second configuration applies redundancy to each element in the overall structure.

R i= 0 .9 9
R i= 0 .9 7
R i= 0 .9 5
R i= 0 .9 3
R i= 0 .9 1

0 5 1 0
0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1
S e ria l

C o m p o ne n ts (N)

R
el

ia
bi

lit
y

1 3 5
0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1
P a ra lle l R e d und a n t

P a ra lle li za tio n (N)

17

Assuming each component has a reliability of 0.95, the first configuration yields an

overall reliability of 0.949 while the second configuration is much better with reliability

of 0.988.

Figure 2.3 Redundancy at System-Level (top) and Component-Level (bottom)

b. Selective Redundancy
Another important consideration in designing fault-tolerant systems is that

redundancy should be applied where it can provide maximum gain for minimum cost. In

other words, a fault-tolerant design should be efficient. While some form of redundancy

is necessary to protect against SEUs, not all bits of information in a circuit have the same

degree of importance. Efficiency is achieved by applying redundancy to only the most

important portions of the design.

Though the idea of selective redundancy has existed for decades [39], it

has recently gained more attention from the FPGA fault tolerance community. Several

research projects [51], [52], [53] have looked at ways of identifying the most sensitive

portions of FPGA circuit designs. These sensitive elements, such as critical finite-state

machines and feedback structures, can then be targeted for TMR protection using less

overall redundancy. While selective TMR can reduce overhead costs, it is typically less

effective than full TMR. Thus, there is a large trade-space for optimizing fault tolerance

and overhead costs.

18

5. Complexity/Confidence Trade-offs
The idea that complexity and confidence are opposing parameters is important in

developing more efficient fault-tolerant designs. This concept, shown on the left side of

Figure 2.4, expresses the intuitive idea that as the complexity of a problem increases, so

does the probability of making an error. Therefore, one has less confidence in the

accuracy of the result. In computing systems, higher precision solutions require greater

complexity. The boxes in the graph represent component count, which was shown in the

previous section to adversely affect reliability. To produce highly precise information, a

system must perform more calculations and handle more data. This complex processing

creates more opportunities for error – higher precision is associated with lower

confidence. Conversely, the data from simpler calculations is less precise but more

reliable. As one moves to the left on this curve, output data becomes more reliable but

loses precision. The axis labeled “Complexity” can also represent precision, information,

effort, size or power. A simple circuit using only a few components requires relatively

little chip area and power. As the circuit is made more complex in order to generate more

detailed results, it will require more area and power. In addition, each new circuit

element introduces new opportunities for faults and errors to occur.

The pyramid shape on the right side of the figure shows one way of thinking

about how a system is constructed. The bottom of the pyramid contains many

components, making these lower levels more complex but less reliable. The top of the

pyramid is more reliable, but with fewer components and less complexity these top levels

cannot provide high precision results.

Figure 2.4 Complexity-Confidence Relationship (left) and System Structure (right)

Complexity

C
on

fid
en

ce

19

Consider, for example, the calculation of the trigonometric functions sine and

cosine. Given any angle, one can be certain that both the sine and cosine of that angle are

in the range [–1, +1]. This is not very detailed information, but it comes with high

confidence. A simple hand calculation could improve the estimate of the sine and cosine

values to perhaps within +/- 0.1 or better. While the second estimate is more precise, its

solution requires more calculations, making the estimate more prone to errors. Therefore,

we have less confidence in the more precise value. For certain algorithms, it may be

sufficient to know that the sine or cosine value falls within the range [–1, +1] or that the

function is positive or negative. An “exact” value (for example, precise to 10 decimal

places) may be desirable but not essential. In many cases being within an approximate

range is more important than having a highly precise, but possibly incorrect, result.

In order to be both reliable and precise, fault-tolerant computer designs must

include subcomponents that span the confidence-complexity spectrum. The main

processing blocks form the lower levels in the pyramid and perform the detailed

calculations that produce high precision results. However, a typical processing block

provides no protection against functional faults and is therefore relatively unreliable.

Voting circuits resolve potential disagreement among the redundant processing elements

and determine which result to accept. Control circuitry manages the flow of information

through the processing blocks. These voter and control circuits represent the top of the

pyramid. They contribute little information toward the intended system function, but

must be extremely trustworthy.

While neither the voter nor the control circuits produce useful output data, a

failure in either of these units can invalidate the entire fault-tolerant structure. These

system elements can be thought of as the “reliable kernel” or “trusted agent.” Because

the reliable kernel performs vital functions that are essential to system operation, this

kernel must somehow be made more trustworthy than other parts of the system. In

redundant computing systems, the reliable kernel needs to include the voter circuitry and

as many of the “single points of failure” as possible.

20

C. ERROR CODING TECHNIQUES
An interesting option for FPGA fault tolerance is to employ error coding

techniques. Berger and residue codes for fault tolerance have long been considered more

efficient alternatives to TMR, which is discussed in the next section. However, their

limitations and overhead requirements make them unattractive from a cost perspective for

controlling faults in complex FPGA designs.

Berger codes are not suitable for the type of fault tolerance addressed in this

dissertation. First, they only provide error detection; they cannot locate or correct errors.

The Berger checks are designed to trigger an error flag whenever numerical errors occur,

but a higher-level system is needed to correct the errors. Second, Berger codes rely on

the assumption that all errors in the data word are unidirectional, that is either all 0-to-1

transitions or vice versa [46]. Such a fault model is insufficient for the complex

interactions within FPGA circuits. Third, Berger codes are more costly than simple

duplication [46], [47]. Their area overhead is often nearly the same as the duplication

method, though Rao mentions that overhead can be lowered if the Berger coded data can

be directly relayed to other modules without being decoded. In various studies, Berger

coding introduced between 50% and 250% area overhead. Finally, Berger coding

requires significant modification of the original circuit, whereas duplication techniques

such as TMR are much simpler to implement.

In [54] a biresidue code technique is proposed for conserving circuit cost, size and

power relative to the common triplicated redundancy method that Rao describes as the

“von Neumann approach.” Rao estimates that the additional circuitry needed for

biresidue checking is roughly equal to duplication of the original arithmetic circuit.

Though better than TMR, this amount of redundancy is still quite significant. The

complexity and reliance on encoding, decoding and checking units is an even greater

cause for concern. In practical applications, the moduli are typically of the form 2k or

2k±1 to simplify the calculations. Nonetheless, calculating residues can be

computationally expensive. Furthermore, it is difficult to ensure correct operation of the

residue checkers in an FPGA system without making them redundant as well. Correcting

detected errors involves recomputing missing data [54], which may require circuits nearly

as complex as those being protected.

21

Another issue with residue check approaches is that they don’t often provide

graceful degradation. The biresidue approach in [54] will detect and completely correct a

wide range of possible faults, but the errors whose residue is zero go undetected. Since a

residue of zero only occurs for numbers that are integer multiples of the product of the

base moduli, these undetected errors differ greatly from the correct solution. Thus, this

approach does not make use of the varying importance of the different bits in an output

data word.

D. TRIPLE MODULAR REDUNDANCY (TMR)
A common technique for improving reliability within FPGAs is known as Triple

Modular Redundancy (TMR). The most straight-forward TMR style is to replicate the

desired circuit three times and include voting logic to determine the most likely correct

output. Because the most likely fault scenario is that a single module is in error,

agreement between two modules is enough to determine the correct result. Thus the

voter outputs the most common result. Figure 2.5 shows a simple TMR architecture.

Note that the voter module should be considered part of the “reliable kernel” since a

failure here can directly corrupt the output data.

Figure 2.5 Simple TMR Architecture

In general, it is possible to build N-modular redundant (NMR) systems with

increasing reliability as N gets larger. Figure 2.6 shows this improvement as N increases.

Copy C

=?

Input

Copy A Copy B

Output

22

Figure 2.6 Reliability of NMR Systems

However, the reliability improvement is not a linear function of N. The relative

gain decreases as N increases, as seen in the figure. Equation 2.3 describes the

performance of an NMR system in which each module has the same individual reliability,

Rm [50]. In this equation M represents the number of modules out of the total number N

that must simultaneously operate correctly for the system to work; typically M is greater

than ½ of N. A realistic reliability model must also include the possibility of voter and

other shared logic failure. These factors can be included as multiplicative terms that

reduce the reliability estimate [39].

 () () () ()[]i
m

MN

i

iN
mNofM tRtR

iiN
NtR −∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
−

=

− 1
!)!

!
0

.. (2.3)

By triplicating the logic and adding the voter/control circuitry, a TMR fault-

tolerant design uses more than 3 times the chip area and power of the original circuit.

Rollins, et al., tested several circuits and found that the TMR circuits used 3x-7x as much

power as the original circuits [9]. A TMR design is wasteful in that it performs each

Rm=0.9
Rm=0.85
Rm=0.8

0 2 4 6 8 10 12 14
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
NMR Reliability

D egree of Replication (N)

R
el

ia
bi

lit
y

23

calculation 3 times but only uses each calculation once. This can be described as a “high

redundancy factor.” Conversely, a design with a “low redundancy factor” and an

effective fault mitigation technique could provide high reliability with lower overhead

costs. Therefore TMR is not always the best choice for meeting overall system

requirements.

E. REDUCED PRECISION REDUNDANCY (RPR)
This study proposes a unique architecture, termed Reduced Precision

Redundancy” (RPR), as an alternative to the common NMR approach. This approach

offers reduced size and power consumption compared to NMR. It also protects against

common-mode failures in the algorithm or implementation because of its inherent design

diversity. In addition, RPR is relatively easy to implement and can be applied to a broad

range of computational tasks.

1. Background
The term RPR has been used in the past by Shanbhag’s research team at the

University of Illinois to describe their work in reliable low-power digital signal

processing (DSP) [55]. Shanbhag’s team is concerned with data errors caused when the

supply voltage is lowered as a power-saving measure and circuit delays exceed the clock

period. This typically leads to large numerical errors, which can be detected and/or

corrected by a parallel computation with fewer bits of precision.

While RPR as used in this dissertation is similar in concept to Shanbhag’s work,

several important differences distinguish this research from any prior efforts. First,

whereas the Illinois team has investigated specific DSP applications such as FFT and

filtering, this dissertation addresses fault tolerance for general numerical computing

problems. Second, their work does not consider SEUs nor faults in FPGA

implementations. Furthermore, they assume that the reduced precision module and all

comparison/voting circuitry are fault-free. While this is appropriate for their fault model

and target hardware, it is insufficient for protecting spacecraft FPGA systems.

Concepts similar to RPR have been widely used in other fields. Littlewood [56]

examined software designs, for use in critical safety control systems such as air traffic

24

control and nuclear power plants, in which “a simple secondary system is used as a back-

up to a more complex primary.” In these kinds of designs, the more reliable simple

system can provide sufficient control, though with less functionality, if the primary

system fails for any reason. This architecture is described as “redundancy in which the

different components or versions have different levels of trust placed in them.”

There are numerous variations on this complex/simple redundancy scheme in the

software engineering world, known variously as: primary/backup, primary/alternate and

mandatory/optional. Implementations of this scheme include spatially redundant,

temporally redundant and combined approaches. In hard real-time systems, this approach

can ensure that critical functions are completed according to their stringent schedule.

These schemes involve hard tasks that must meet the defined schedule and soft tasks that

provide enhanced performance but are not held to the same strict schedule. In real-time

operating systems with a single microprocessor, the designs use temporal redundancy by

executing the primary and alternate tasks in a certain time order based on an error

checking formula [57], [58]. This type of architecture can provide protection against

faults in the data or algorithm as well as uncertainties in processor execution time. With

a multi-processor architecture, spatial redundancy can provide additional design

flexibility and enhanced reliability.

Liu and Han [59], [60] propose similar concepts that they call “imprecise

computation” and “performance polymorphism” for balancing reliability and

performance in real-time operating systems. Liu [59] discusses imprecise computation

for real-time systems in order to gain fault tolerance and handle processor workload

uncertainties. In such systems, algorithms must be designed such that intermediate

results are available while computing the full precision result. These intermediate results

must be monotonically increasing in precision so that the output increases in precision as

long as the algorithm is allowed to run. Thus, precision can be dynamically adjusted to

balance throughput and checkpoint-based fault-tolerance. Han looks more specifically at

scheduling algorithms for optimizing performance using primary (high precision) and

alternate (low precision) tasks [60].

While these concepts are common in the software engineering community, there

is very little discussion in the literature regarding their utility for FPGA fault tolerance.

25

The most relevant work, by Kakarla and Katkoori [61], uses “partial evaluation” to build

a TMR-like SEU-tolerant design. Their design provides SEU immunity through a unique

approach of constructing “reduced circuits” in a spatially redundant configuration. These

reduced logic circuits are simplified from the original circuit by determining the most

probable value for each signal. A signal with a high probability of being either 0 or 1 is

rounded to a constant value and the circuit is reduced. In addition, temporal redundancy

is implemented on the full circuit to cover instances when the input data differs from the

predicted values. Based upon the actual input data, the system dynamically chooses

whether to use the results from the spatially redundant or temporally redundant circuits.

One limitation with this approach is the increased latency through the temporally

redundant path. Another problem for an FPGA implementation is the vulnerability to

configuration faults within the original circuit when low-probability input vectors are

received.

2. Architecture Description
RPR is an efficient fault-tolerant architecture that improves the reliability of

complex calculations by utilizing approximate solutions from relatively small redundant

elements. RPR provides many of the same benefits as TMR, such as error detection,

error masking, fault location and ease of implementation. In contrast to TMR, this

architecture consumes fewer resources and may be considerably more efficient for many

applications. The main drawback to RPR is that its error masking capability can only

guarantee an approximate solution.

The concept for “reduced precision redundancy” (RPR) is shown in the figure

below. Notice the similarity to the pyramid in Figure 2.4. The bottom level consists of a

computation unit that operates at the maximum precision needed for the intended

application; thus this unit is called the exact module. In the middle are 2 or more units

that perform the same basic function as the exact module, though with less precision; thus

they are called approximate modules. At the top-level is a voting unit that decides which

of these several results are most likely correct and should be provided as the output data.

26

Figure 2.7 Simple RPR Architecture

This architecture is considerably more efficient than TMR if it provides

acceptable performance. A major contribution of this research is the demonstration that

in many situations RPR performs very well. This dissertation quantifies RPR

performance according to computational throughput, latency, accuracy and reliability. In

benign conditions, RPR provides performance equal to TMR designs. RPR may be less

accurate or less reliable than TMR in high radiation environments, but its overall

efficiency is better because it consumes fewer resources. As a general rule, the efficiency

of a design can be assessed by its physical size – in an FPGA this can be measured by the

fraction of resources used as given by vendor-specific parameters such as slice count and

I/O pin count. Power consumption is often proportional to area, though detailed analysis

is needed to prove which of various competing designs use less power. If the RPR

version of a design is much smaller than a TMR version, it should offer significant power

savings.

The resource savings of an RPR design depend heavily on the level of precision

needed in the redundant modules. With the wide range of possibilities for implementing

the approximate modules, there is a nearly continuous range of possible resource

utilization for a design. At one end of the spectrum are designs with very coarse

approximations, which utilize extremely small approximate modules. At the other end of

Exact

Voter Output

Input

Approx A Approx B

27

the spectrum are designs that require extremely high precision even in the redundant

modules. The limiting case at this end would be a full TMR solution. Chapter IV

addresses these issues in more detail.

3. Applying RPR to Computational Problems
In this dissertation, computational problems and algorithms suitable for RPR

implementation are termed “Class A” problems. Conversely, problems and algorithms

that are not suitable for RPR implementation are termed “Class B” problems. Most

numerical computations are Class A since digital systems must represent real numbers

with finite precision, introducing some degree of approximation even in the full precision

situation. It is a matter of implementation and desired performance that determines the

level of precision used for representing the numbers. Other types of problems may also

be Class A, such as complex state machines that compute control signals of varying

complexity and criticality. Furthermore, all design specifications should be carefully

scrutinized, since it is common for system designers to over-specify portions of a design.

If a component spec calls for unnecessarily high precision, perhaps the spec can be

relaxed or the component’s reliability can be improved with lower-precision redundant

units.

a. Class A Problems
For most Class A problems, a gradient of importance exists amongst the

computed bits. The figure below shows a hypothetical distribution curve where various

bits are more or less significant. This figure suggests that more effort should be spent on

improving the reliability of the most important data elements and less effort given to the

least important elements. This concept is directly applicable to numerical functions since

they produce results with easily identified more-important and less-important data

elements. In a fixed-point number system the most important data is typically the Most

Significant Bit (MSB), which carries the most weight, and the least important data is the

Least Significant Bit (LSB) which carries the least weight. Similarly, in a floating-point

number system the exponent field is typically the most important and the mantissa (or

significand) field is the least important.

28

Figure 2.8 Bit Significance Distribution Curve

Addition and multiplication are simple examples of the kinds of

computational problems appropriate for RPR. In a fixed-point number representation, an

approximate addition can be produced by only including enough bits, starting at the

MSB, to meet the minimum acceptable precision. (Keep in mind that for RPR to be

useful, the minimum acceptable precision must be appreciably less than the precision

needed for optimal performance.) For example, a lazy bookkeeper might balance his

checkbook by only adding/subtracting whole dollar amounts – the results will probably

be close enough to avoid major financial disaster.

Next, consider the task of multiplying floating-point numbers. More harm

can come from errors in the sign and exponent calculations than in the mantissa

calculation. Thus, an approximate solution might involve checking the signs and adding

the exponents – therefore eliminating multiplication of mantissas and any necessary

pre/post-shifting. This type of “order of magnitude” calculation is common in science

and engineering when performing initial estimates and “sanity checks.”

The tables below illustrate these basic techniques with some simple error-

bounding (upper and lower bounds) and bias-removing schemes. Removing bias for

addition might involve adding a value of ½ for each element being added, since this is the

best estimate of the discarded fractional portion of each entry. For the floating-point

multiplication example, note that even the “exact” solution is not really exact since the

correct result should be 7,448 instead of 7,424. This, of course, is because of the limited

word-length allowed in this case – as is true in most real-world designs. Even with

infinitely precise internal calculations, the output cannot represent the number 7,448 with

only 4 fractional mantissa bits. Thus “approximate” solutions are inherent in this

MSB LSB
(Exponent) (Mantissa)

Si
gn

ifi
ca

nc
e

Bit Index

29

calculation. In order to remove bias in multiplication, we could estimate each entry’s

mantissa as 1.510 and precalculate a best guess for the resultant mantissa based on how

many entries are multiplied.

 Unsigned binary Decimal

A 01001.001 9.125
B 00110.101 6.625
C 00100.110 4.75
D 00011.010 3.25
Exact sum = A+B+C+D 10111.110 23.75
Integer sum (low) 10110.xxx 22
Integer sum + 4*½ (mid) 11000.xxx 24
Integer sum + 4*1 (high) 11010.xxx 26

Table 2.1 Approximation Methods for 4-Input Sum Calculation

 Floating-point binary
sign | exp | mantissa

Decimal Equivalent

A + | +0110 | 1.0011 1.1875*26 = 76
B + | +0011 | 1.1100 1.75*23 = 14
C - | +0010 | 1.1100 1.75*22 = 7
“Exact” product =A*B*C - | +1100 | 1.1101 1.8125*212 = 7,424
Exp sum * 13 (low) - | +1011 | 1.xxxx 211 = 2,048
Exp sum * 1.53 (mid) - | +1100 | 1.1011 1.6875*212 = 6,912
Exp sum * 23 (high) - | +1110 | 1.xxxx 214 = 16,384

Table 2.2 Approximation Methods for 3-Input Product Calculation

b. Class B Problems
There are several ways for a problem to fall under the Class B category. First, the

full precision calculation of a function may be the simplest solution. Solutions to some

problems are either correct or incorrect, with no possibility of being approximately

correct. These kinds of problems frequently exhibit no gradient of importance among the

output bits, as discussed in the previous section. Also, some problems are only solvable

using a single algorithm or method. Most logic functions (such as the vector operations

AND, OR, NOT, etc.) fall under the Class B category as there is no meaningful way of

describing an approximate solution. Peterson and Rabin [62] proved that for all non-

trivial logic functions, except XOR and its complement, the only means of error checking

is complete duplication. XOR is a special case because parity bits can be used to detect

30

and/or correct errors in the XOR computation. For the other logic functions, the simplest

circuit for detection of errors requires a coding scheme and checking operation identical

to the operation being checked.

Second, even if an approximate solution can be found, it may be insufficient to

adequately protect the system against faults. Third, a particular problem or algorithm

may be Class B for practical reasons such as size, speed and power. For example, if the

only possible reduced precision solution requires more complicated voting circuits than

TMR, then RPR is not a wise choice.

Another way of looking at Class A/B problems is to consider the

possibility of catastrophic failure. Generally speaking, systems with well-designed

feedback mechanisms can tolerate some degree of imprecision/error/noise. However,

systems with positive feedback or open-loop systems may not be able to recover from

even a single error. If even small errors can lead to catastrophic failure or an

unrecoverable state in which complete system shutdown is needed, the task is Class B.

Many state machines have certain undefined states that, although unexpected in normal

operations, are possible in an SEU environment. In a poorly designed state machine

these possibilites may not have been considered and the system may never recover on its

own from such a situation. For example, consider a microprocessor that is performing an

interrupt service routine. If instead of reading an instruction from the interrupt handler

code, the processor unintentionally writes into the memory space holding the code, the

processor may get stuck processing invalid instructions until a complete reboot is

performed.

c. Approximate Solutions

While it is difficult to give precise definitions of Class A and Class B

problems, it is possible to describe whether or not approximate solutions can be found for

a particular problem. The following discussion considers only whether RPR is possible,

not whether it is advantageous. Since the goal of fault-tolerant computing is to ensure

correct data output, it is important to understand how functions act as mappings from

inputs to outputs. Some mathematical definitions related to functions help this

31

discussion. The domain is the set of all input values to the function. The codomain is the

set of all possible output values from the function, whereas the range is the set of all

actual output values.

The distinction between “codomain” and “range” is especially significant

with regard to fault-tolerant FPGA designs. Since SEUs can cause a function to

malfunction in perverse ways (adders can become subtractors, etc.), it is important to

recognize that an erroneous output value could exist anywhere in the codomain, not only

in the expected range. For example, an algorithm that adds a series of positive integers is

expected to produce outputs in the range of positive integers. Yet a misbehaving circuit

might output negative numbers. A fault-tolerant design should consider the potential

effects from such miscalculations and provide adequate detection/mitigation for them.

Functions are often thought of as “mapping” inputs to outputs and can be

visualized as directed arcs linking domain members with codomain members. Such

visualizations can help determine relationships between various domain and codomain

members. For example, consider the logical function AND for input vectors of up to 3

elements, depicted in the figure below. Since the output from this function can only take

on two values, TRUE or FALSE, numerous input values produce the same outcome. Can

the function be simplified to take advantage of the fact that the correct outputs can be

reached using less input information? Intuitively we know that the answer is no. As

shown highlighted in the figure, if only the leftmost bit is considered by the function, the

wrong conclusion will be made 3/8 of the time. If only the leftmost 2 bits are considered,

the wrong result is produced 1/8 of the time. All 3 bits of input are necessary and no

simplification is possible. Therefore the logical function AND is a Class B problem.

32

Figure 2.9 AND Function Map for 3-Bit, 2-Bit and 1-Bit Input Vectors

This graph-based technique can be expanded to include more general input

and output relationships. The figure below shows input vectors of various lengths (as

indicated by the number of contiguous empty boxes) and several output points. By

grouping inputs and/or outputs in some way, it may be possible to find relationships

permiting simplification of the function. Input groupings may be related to positional

features of the vectors, as discussed in the AND example, or numerical ordering. Output

groups may be defined precisely (such as all values within a narrow range) or broadly

(such as all positive values). Furthermore, a particular output value may belong to

multiple groups. An additional feature shown in the figure is that the graph can include

multiple distinct functions that perform the same basic operation. In this hypothetical

example, a different mapping function is assumed for each input vector size (as shown by

distinct linetypes).

001
False

True

010

011

100

101

110

111

00

01

10

11

0

1

000

33

Figure 2.10 Hypothetical Multi-Function Map

This abstract description can also be described as “clustering.” Clusters

correspond to the groups defined above, with the additional feature that members of a

cluster are more closely related to one another than to any other cluster. If each cluster of

input vectors maps to a unique cluster of output vectors, there is potential for

simplification through approximation. If, however, there is cross-over between input and

output clusters, such a simplification is not possible. If the function map shows

clustering, approximation may be possible, but is not guaranteed. Clustering is a

necessary, but not sufficient, condition for Class A. Functions that exhibit no clustering

or clustering that cannot be translated into a simplified function are Class B problems.

Another simple example demonstrates how clustering can reveal potential

simplifications. In this example, the function is a simple conversion from a binary

number system to decimal. The range for the decimal values is 0 to 7, thus 3 binary

digits are needed to precisely map to decimal integers. If the computing system is limited

to only 2 binary digits, then it must decide how to interpret the binary values. Assuming

the system is required to produce integer values, the value “00x” in the figure could map

to either 010 or 110. Input clusters can be defined by the 2 MSBs {00x, 01x, 10x, 11x}

34

and output clusters can be defined as the intervals {0-1, 2-3, 4-5, 6-7}. Each input cluster

maps to a unique output cluster, so the function can be simplified.

Figure 2.11 Clustering for 2-Bit and 3-Bit Representations of Integers

Approximate solutions can be more easily identified when the problem is

defined at the proper level. Although the AND function itself is Class B, it may be part

of a larger and more complex algorithm, which at a higher level of abstraction could be

deemed Class A. Peterson and Rabin [62] also observed this important distinction and

noted that “an adder can be constructed of ‘and,’ ‘or,’ and ‘not’ devices which cannot be

simply checked, and yet the addition operation as a whole can be checked quite well

without complete duplication."

d. RPR Suitability
The process for determining if a task is amenable to RPR is summarized in

the following flowchart. The figure below outlines the steps for determining whether a

problem is Class A or B. When using this flowchart, both the algorithm and its intended

application must be considered together. A given algorithm may be Class A in some

010 011

100 101

110 111

00x

01x

10x

11x

000

2

3

4

5

6

7

001 1

0

35

applications but Class B in others. Similarly, a problem might have several possible

solutions with varying precision, but the higher-level system may require full precision

constantly.

Figure 2.12 RPR Suitability Flowchart

This process begins with a thorough understanding of the desired

computational task or problem. Assuming that the system requires some degree of fault

tolerance, the first step in the flowchart determines whether error detection or correction

is necessary. If the system requires accurate data on a continuous basis, then error

correction or masking may be needed. For example, losing a few data frames on an

encrypted link may cause unrecoverable corruption of the datastream. In less stringent

designs, error detection may be sufficient. For example, a video transmission with

Computational
Task

1) Error correction or
error detection needed?

2a) Safe if slightly
imprecise results pass

undetected?

2b) Safe to accept less
precise data until fault

repaired?
Class B

Class A

Correction

No

Detection

Yes Yes

Full Precision
Algorithm

3) Can approximate
solution be formulated?

4) Is approximate
solution more efficient?

Yes

Class B
No

Class B
No

Yes

Class B
No

Task

Algorithm

36

periodic resynching might only require error detection since losing a few video frames to

bad data is usually not catastrophic.

If error detection is sufficient, step 2a determines whether full precision

error checking is needed or if error bounds checking is adequate. With an RPR design

using upper and lower bounds checking, faults in the exact module could cause it to

produce slightly imprecise results that the voter would deem acceptable. Such errors

would be undetected if they are less than the threshold of the upper/lower bounds checks.

If the system can tolerate these undetected inaccuracies, RPR may be appropriate.

Otherwise, exact error checking is required – full duplication or TMR is needed – and the

task is Class B.

If step 1 calls for error correction, step 2b addresses the safety of the

system if the precise calculation is corrupted. RPR can provide fault masking by using

output from one of the low precision modules when faults corrupt the high precision

results. If the cause is a persistent configuration fault in the FPGA device, this situation

will exist until the fault is scrubbed from the circuit. If the cause is a transient data fault,

the error may exist for as short as a single clock cycle. In either case, the system’s

response to imprecise data must be assessed. If imprecise “noisy” results can lead to

catastrophic failure, the task is Class B.

The next two steps relate to the specific algorithm(s) selected to perform

the required task. Step 3 considers whether it is possible to build a reduced precision

circuit. If such a circuit is impossible or impracticable, the algorithm is Class B. This

was discussed at length in the last couple of sections. The baseline design for the full

precision algorithm is shown as an input to step 4, which looks at whether the reduced

precision design provides any substantial benefit. If the answers to steps 3 and 4 are

affirmative, RPR is a good candidate for achieving fault tolerance in a design and the task

is Class A. The next section provides examples to help illustrate this selection process.

e. Examples
Consider a satellite’s solar panel servo-control system. Satellites in low-

earth orbit (LEO) spend roughly half the time in sunlight and the other half in darkness.

While in sunlight, the articulating solar panels are oriented towards the sun to maximize

37

power output. In this hypothetical example, the designers want to conserve energy while

in Earth shadow, so the solar panel control system will not track the sun vector through

darkness. Instead, once the satellite enters darkness, it calculates a minimum-energy

solution to position the solar panels in the optimum direction for when the spacecraft

reenters sunlight. Fault tolerance in this application should ensure the solar panels face in

the general direction of the sun upon exiting Earth’s shadow. A miscalculation that

directs them away from the sun could be very damaging (loss of power could lead to loss

of spacecraft operation).

The algorithm for this calculation is likely to be quite complex. However,

there are simple approximate solutions, such as using the position calculation from the

previous orbit as an approximation and error-checking value. Error detection may be

adequate for a LEO satellite, which spends roughly 40 minutes in darkness per orbit,

allowing plenty of time to recalculate if an error in the detailed calculation is detected.

Since the approximate calculation can be performed with very little circuitry, RPR may

be appropriate for this problem.

As another example, consider a satellite attitude control algorithm

designed to keep the satellite pointed in a desired direction. Inputs include various

parameters such as position, velocity, current orientation, desired orientation, etc.

Outputs consist of commands to thrusters and reaction wheels. The basic design

specification includes the computational precision needed to meet the satellite pointing

accuracy requirement. At steps 1 and 2 in the flowchart of Figure 2.12, we find that the

system cannot safely stall long enough for a fault to be repaired. Complete

reconfiguration of an FPGA may take tens of milliseconds, allowing the satellite to drift

dangerously far from the required position. Therefore, error correction/masking is

needed. However, small deviations from the desired position/orientation can be

accommodated by the natural feedback in the control system, so occasional small

perturbations are acceptable. Quantifying the frequency and amount of acceptable

perturbation requires careful scrutiny of the design. At step 3 in the flowchart, there are

many approximate solutions, ranging from lower precision numerical calculations to

simply ignoring some input parameters. Finally, at step 4 we anticipate that the simpler

38

control algorithms will be smaller and consume fewer resources than the more exact

algorithm. Therefore, we conclude that RPR is a viable option for this design.

Data compression algorithms provide interesting examples for considering

the applicability of RPR. Some data compression tasks are Class A, while others are

Class B. Lossy compression techniques, such as JPEG, can usually tolerate some

imprecision. One of the standard JPEG compression techniques performs numerous

multiplications and additions as part of calculating the discrete cosine transform (DCT)

for each subarray in an image [63]. A transient error during one of these calculations

leads to poor image reconstruction in only a small portion of the total image, leaving the

rest of the image intact. Furthermore, even faults causing reduced precision across an

entire image are generally tolerable, as they degrade image quality but are not

catastrophic to the image processing system. Thus the DCT calculation for JPEG image

compression is Class A. (Chapter VIII looks at this example in more detail.)

There are numerous lossless compression techniques, with widely varying

methods of compressing data. One of the most common lossless compression codes is

the Lempel-Ziv code (a standard part of ZIP programs). This code is based on

dynamically building a dictionary of common “phrases.” Compression is possible when

addressing uses fewer bits than the phrases themselves. The program compresses data by

addressing the dictionary entry that contains the phrase, rather than the phrase itself.

Lempel-Ziv is a Class B algorithm since a corruption of the dictionary can lead to

complete failure of all subsequent phrase/address calculations [35]. Other lossless

compression techniques may be amenable to RPR application. For example, Huffman

coding, which is used in some facsimile transmission and JPEG standards, is based on

predicted symbol statistics [64]. Imprecise calculation of these symbol statistics may

cause graceful degradation as in DCT, rather than abrupt failure as in Lempel-Ziv.

f. Applying RPR to non-FPGA Systems
While this dissertation focuses on FPGA designs, the RPR design

philosophy can be extended to other technologies. As discussed in Section 1 above, RPR

is similar to techniques used in other fields. Many of the design parameters considered in

this dissertation (area, speed, reliability, etc.) are directly applicable to any digital

39

computing technology. However, RPR is especially suitable for FPGAs because its

redundancy structure addresses the large range of possible faults, including configuration

faults, that affect circuit behavior. For traditional digital systems implemented on non-

volatile circuits, transient faults affect only data values and leave circuit function intact.

For these systems, many other fault tolerance approaches, such as data coding, may be

appropriate. Nonetheless, because of RPR’s scalability and ease of implementation, it

offers a unique and competitive option for fault-tolerant designs.

5. Flexible Precision Computation
The preceding sections focused mainly on determining whether it is possible to

apply RPR to various computational problems. A higher-level system perspective is

necessary to determine whether RPR is practical in a certain application – steps 2a and 2b

in the flowchart of Figure 2.12 address this issue. A key performance parameter of any

numerical computation is the precision of its output. Precision is typically measured by

the number of bits used to represent the whole and fractional parts of the true numerical

value. For example, a 10-bit fractional binary number can represent real numbers to

within +/- 2-11=0.000488 of their true value.

Digital design specifications generally include the precision required for a given

application. Designers often use a worst-case scenario that requires maximum precision

to determine these requirements. A system built to these conservative specifications will

provide the necessary performance under all conditions. However, many computing

applications can operate at lower precision for short periods of time with minimal or no

adverse effect. The term “flexible precision” refers to designs that take advantage of this

possibility by adapting to meet variable precision needs.

Flexible precision computation is a viable technique for many applications. For

computer graphics processing, such as in video gaming, the fidelity of image rendering

can adapt according to scene dynamics, display device properties and viewer preferences.

Furthermore, the limits of human visual perception can be exploited to simplify

computations that produce results of higher precision than the human eye can perceive

[65].

40

Control systems is another field where flexible precision seems promising. For

example, a satellite’s attitude control system senses the satellite’s position/orientation and

commands thrusters and reaction wheels to achieve a desired end-state. Such systems

must have a very short response time and be very reliable. In this situation, it is

preferable for the control system to constantly provide accurate but less precise

commands than to occasionally fail abruptly and issue inaccurate and possibly

detrimental commands.

As a more specific example, imagine a reconnaissance satellite that images

specific locations on the earth’s surface. The satellite must be oriented such that the

imaging sensors can view the approximate ground locations. This general orientation

control is sometimes called “coarse alignment.” Typically the imaging sensors

themselves have at least one feedback control loop to permit finer control for keeping the

target image centered in the camera field-of-view. This more precise pointing control is

called “fine alignment” and is commonly used on ground-based telescopes with fast

steering mirrors [66]. Fine alignment is also used on consumer products, such as video

cameras. Many hand-held video cameras offer “image stabilization” features that use

optical and/or electronic techniques to compensate for jitter. Ideally, coarse alignments

control the reconnaissance satellite so precisely that the fast steering mirror need only

compensate for small-amplitude, high-frequency jitter. The inherent redundancy of this

arrangement, however, allows for some degree of imprecision in the coarse alignment.

If a system can accommodate flexible precision then it is likely Class A.

Algorithms that take advantage of flexible precision, such as the dynamic graphic

rendering technique mentioned above, are prime candidates for RPR. In addition,

systems that function best with full precision but can safely operate with temporarily

reduced precision, can also benefit from RPR’s efficiency. Steps 2a and 2b in the

flowchart address whether flexible precision can be safely utilized in an RPR structure.

F. VOTER ISSUES
Voting techniques are important to the overall effectiveness of a fault-tolerant

design. Descriptions and classifications of a wide variety of voting techniques are

provided in [67]. A common NMR voting method is to take the bit-wise majority as the

41

correct output vector [68]. However, when faults exist in more than one module, this

voting style may produce an output that doesn’t exactly match any of the pre-voted

results. The table below demonstrates this dilemma for 3-modular and 5-modular

redundant systems. The bit-wise majority output vector may not even represent a

permissible output. Furthermore, in the hypothetical 5-modular example shown, a fault

analysis based on the bit-wise majority would conclude there must be faults in all 5

modules. The vector-wise majority implies that only 3 modules are faulty. In this

example the vector-wise majority seems superior, since fewer faults is the more likely

scenario. Gersting [69] studied alternative voting schemes that partially address these

issues.

 3-Modular

Redundancy
5-Modular

Redundancy
Module A result 101100 101100
Module B result 011111 011111
Module C result 100011 100011
Module D result 101100
Module E result 010101
Bit-wise majority 101111 101101
Vector-wise majority ?????? 101100

Table 2.3 Hypothetical Outputs from 3-Modular and 5-Modular Redundancy

In some situations an inexact voting method is necessary. For example, when

comparing the outputs from redundant analog-to-digital converters, it is quite likely that

the various outputs will not match exactly due to inherent noise in the system. Error

detection in this scenario must include some error thresholds in order to distinguish

between truly faulty modules and simply normal data variability. Some of the issues with

inexact voting are the determination of appropriate thresholds and the increased

complexity of inexact voting circuits [67]. Lorczak [70] proposes a generalized median

voter for addressing some of the difficulties with inexact voting. In addition, Lorczak

provides several examples demonstrating situations when various alternative voting

methods are optimal.

42

These issues of inexact voting are important in an RPR implementation. In

considering the simple RPR architecture shown in Figure 2.7, it is clear that the voter

must decide whether the exact solution is acceptable based only upon information from

inexact redundant modules. With a binary pass/fail criteria, the voting methodology must

properly merge the data with the understanding that the various modules will not match

one another exactly. The example in the table below demonstrates this dilemma.

 Binary Two’s

complement
Decimal

8-bit “exact” 00111001 57
4-bit w/ truncate 0011xxxx 48
4-bit w/ rounding 0100xxxx 64

Table 2.4 Example Relationship Between Alternative Numerical Approximations

The upper four bits of the exact solution match the approximate solution

calculated by truncation, but not the calculation based on rounding. A sophisticated voter

could use either approximation technique and apply an error bound before declaring the

exact solution correct or incorrect, but this would require a larger and more complex

voter circuit. Using spatial redundancy in the middle layer can keep the voter as simple

as possible. Two approximate modules, for example, could calculate upper- and lower-

bounds that differ by one in their LSB position. Then the voter need only compare the

most significant bits to determine if the exact solution matches one of the approximate

values and is therefore within the error bounds. (Chapter VIII discusses these issues in

more detail.) However, this approach requires the approximate modules to be highly

reliable, since the voting is essentially a 2-out-of-2 pass criterion. To increase the

reliability of the approximations and voting, further redundancy within the middle and

top layers of Figure 2.7 may be appropriate, since duplication of these smaller modules

can be simpler and smaller than duplication of the exact module.

G. SUMMARY
This chapter has developed RPR as a new approach for achieving SEU tolerance

in FPGAs. Like other fault tolerant methods, RPR requires error checker and voter

43

components that have higher reliability than the circuits they are protecting. In FPGA

designs this can be achieved if the checker/voter modules are significantly smaller than

the primary computation module, as smaller circuits should be less likely to suffer SEUs

than large circuits. Chapters VI and VII present data confirming this hypothesis. The

other main advantage of RPR is that the relatively small redundant calculation circuits

require less area and power than the redundant circuits in TMR. Chapter III discusses

FPGA power reduction in more detail and Chapter VI provides data confirming RPR’s

power advantage. Finally, Chapter VIII revisits several RPR implementation ideas

introduced here, including proper upper/lower bounding, the use of lookup tables, and the

effect of imprecise calculations.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

III. POWER SAVINGS TECHNIQUES

A. POWER EFFICIENCY FOR FPGA DESIGNS
The tremendous demand for energy efficient designs in the commercial market

has spurred development of power-aware circuits and system architectures, especially in

the last decade. There are many approaches for reducing power consumption in digital

circuits. However, some of these approaches are not viable for systems using FPGA

devices. Furthermore, some approaches degrade the radiation and/or fault tolerance of a

system. This chapter describes the most promising methods for reducing power

consumption in FPGA systems, while considering their impact upon the system’s fault

tolerance.

In addition, this chapter discusses the potential power savings of an RPR

architecture over standard TMR and other fault tolerance methods. Once a design for the

full-precision circuit is established, the engineer must choose what redundancy method(s)

to use for protecting the circuit. Although there are many intriguing options for

minimizing power consumption, a principal means of achieving power efficiency is

through reducing the physical size of a circuit. A key feature of RPR is that it requires

much less chip area than TMR. Therefore, RPR’s reduction in circuit size offers

significantly reduced power compared to TMR. Though the total area and power savings

depend on the particular circuit and precision requirements, the RPR circuits built for this

research use between 1/3 and 1/2 the circuit area as the equivalent TMR designs. As is

shown in Chapter VI, effective RPR designs can use less than half the power of TMR and

only slightly more power than the original unprotected circuit.

B. BACKGROUND
Power consumption within CMOS-based (Complementary Metal-Oxide-

Semiconductor) FPGA circuits can be divided into two categories: static and dynamic

[30]. The total power consumed in a device is simply the sum of these two components:

 dynamicstatictotal PPP += (3.1)

46

Static power , given by Pstatic = Vsupply × Istatic, is determined by all electrical

current that flows when a circuit is “powered up” and ready to perform useful functions.

Static power does not depend on whether the circuit is actually processing data, which is

usually determined by a clocking signal. Ideally, electronic devices would consume zero

static power. However, appreciable static power can arise from device imperfections,

biasing configurations, and basic physical design characteristics. In older technologies

such as Resistor-Transistor Logic, the resistors used as bias elements consumed

considerable static power. Transistor leakage current is the most significant component

of static power in modern CMOS technology. In current technology, static power is

typically much smaller than dynamic power and is often ignored in general CMOS

circuits [38].

Dynamic power is consumed when signal transitions occur in a circuit. When a

signal changes from high-to-low or vice versa, current flows in order to charge or

discharge the effective capacitance of that signal node. This effective capacitance

includes the actual capacitance at the node, short-circuit effects during transitions, and

ohmic losses from non-ideal device properties.

The basic formulas for dynamic power in CMOS circuits, such as FPGAs, are

given in Equation 3.2 below. The first formula gives the average power consumption for

a single node within a circuit, while the second formula simply sums the power over the

entire circuit. In this context, a node might be defined at the transistor level or at the

logic gate level. Either definition can be used so long as the node transition activity

factor α and effective load capacitance C are properly determined.

∑=

=

=
−

−

N

i
iitotaldyn

nodedyn

VfCP

fCVP

1

2

2

α

α
 (3.2)

where α node transition activity
f clock frequency
C load capacitance
V power supply voltage
N total number of circuit nodes

47

1. Relative Contributions of Static and Dynamic Power
The percentage of power attributed to static and dynamic terms depends strongly

on the device technology and the specific circuit under investigation. Dynamic power

dominates for typical CMOS devices such as microprocessors and FPGAs [10], [71],

[72]. However, modern FPGAs have routing and control structures that draw substantial

static power, mostly through transistor leakage current [9]. Guo [73] notes that,

depending on factors such as design configuration and operating frequency, “static power

is between 5%-20% of the total power dissipation in Virtex-II.” As FPGA circuit

densities continue to increase, static power will increase proportionally with the total

transistor count. Furthermore, CMOS technology is evolving towards thinner gate oxides

and lower threshold voltages, both of which increase leakage current [74]. In the future,

static power may become dominant in FPGAs. Thus, static power should not be ignored

in FPGA designs.

Whether static or dynamic power dominates is important for power optimization

in circuit designs. Where static power is dominant, emphasis should be placed on circuit

designs that use fewer transistors or that can disable inactive circuit elements. When

dynamic power dominates, designs with fewer signal transitions are most beneficial. The

following two sections discuss ways to reduce static and dynamic power.

2. Reducing Static Power
Static power is essentially a fixed quantity based on the semiconductor process

used to build the device. Therefore, there are limited ways in which a circuit designer

can reduce this term in the power equation. Designs using COTS products, such as most

FPGA devices, have little or no opportunity for influencing static power consumption.

However, ASIC or custom FPGA designs can utilize the techniques described below for

minimizing this component of power.

One way of minimizing static power consumption is to attack the fundamental

physical imperfections that give rise to this power term. Various semiconductor

enhancements have been pursued to achieve this goal. The use of CMOS devices is a

major improvement over older circuit technologies. The counter-balancing NMOS and

PMOS transistors in a CMOS circuit provide fast signal transitioning and very low static

48

current draw. Nearly zero static current flows because in both the 0 and 1 states, one of

the two transistors (PMOS or NMOS) connecting Vsupply and ground is in cutoff mode.

MOS transistors act as nearly perfect switches in cutoff mode by eliminating the

conductive “channel” between the transistor’s source and drain. Virtually all modern

semiconductor devices, including FPGAs, use CMOS technology.

Given that most FPGA circuitry is based on CMOS devices, it is important to

focus on approaches that address the unique issues of this technology. Although CMOS

devices act as excellent switches, they are not perfect. Even when MOSFETs are in

cutoff, inevitably some leakage current flows. This leakage current has two components,

gate and sub-threshold leakage. Gate leakage can only be improved by modifying the

gate oxide material and dimensions; such changes typically degrade transistor

performance [74]. Minimizing sub-threshold leakage requires the use of transistors with

higher threshold voltages [74]. This has two counter-acting effects upon radiation

tolerance. It degrades radiation tolerance by reducing noise margins (the gate-to-source

voltage must be kept high to ensure the transistor remains on), but somewhat improves

tolerance by increasing the threshold that transients must overcome in order to upset the

node (a transistor that is off must suffer a relatively large gate-to-source voltage spike in

order to be switched on) [29].

A more direct way of minimizing static power is simply reducing the transistor

count in the circuit. Fewer transistors mean less leakage power. However, in FPGAs the

total number of transistors is fixed. Every transistor contributes to the total static power

consumption, whether or not it is a part of the functional circuit being implemented on

the device. One approach to overcoming this limitation is to include circuitry within the

FPGA to force unused portions of the device into low-power standby modes [74]. This

technique, widely used in ASICs, determines when specific subcircuits are temporarily

inactive and places them into a standby or “sleep state” in which transistor leakage power

is reduced. Unfortunately, such features aren’t available with the current generation of

FPGA devices.

49

3. Reducing Dynamic Power
Whereas static power in FPGAs is basically a constant value, a circuit designer

has control over many parameters affecting dynamic power. Power can be reduced by

minimizing any of the terms in Equation 3.2, without increasing the other dynamic or

static power terms. This is particularly challenging when certain parameters affect these

terms in opposing ways. For example, semiconductor processing changes that permit

operation at lower voltage V can lead to higher static power draw since lower threshold

transistors are more prone to leakage current [12]. Dynamic power reduction is

especially difficult with FPGAs because the devices’ electrical characteristics preclude

some power saving techniques that are used in VLSI designs. In custom VLSI circuits

the designer has control over many parameters, such as transistor dimensions and

conductor lengths. These parameters, which affect node capacitance C and signal

propagation delay, are fixed in FPGAs. Power consumption in FPGAs is also very

sensitive to design placement and routing [9], as this affects the capacitance and

transition activity of signal nodes. However, optimizing the complex placement and

routing process is challenging.

Large improvements can be made by reducing the power supply voltage, since it

is squared in the power equation. This has been exploited extensively over the years.

Older CMOS technologies were designed to work with standard TTL 5 V signals,

whereas many CMOS devices now use power supply voltages of 1 V and below [30].

Many modern FPGAs use multiple supply voltages within the chip, using the lowest

voltages for the “core” logic and higher voltages for I/O components. However, lower

voltages can decrease the speed of a circuit [75]. A popular approach called dynamic

voltage scaling involves adjusting the voltage supplied to portions of a circuit as the

speed and performance requirements fluctuate.

Another fairly simple way of minimizing Equation 3.2 is by lowering the clock

frequency. This has a linear affect on the total dynamic power but also negatively

impacts system throughput. In order for a slower circuit to complete the same number of

calculations as a faster circuit, it must run for a longer time. Though the slower circuit

requires less average power, it typically uses more total energy to provide the same

50

computational service. However, in situations where the throughput requirements change

dynamically, a variable frequency clock design may be beneficial.

The next term to address is the capacitance. Semiconductor advances have

permitted smaller device dimensions and shorter interconnections, thereby helping to

reduce dynamic power with each new generation. In ASIC designs, the layout and length

of wires can be optimized to minimize the capacitance of nodes with high toggle rates.

However, in FPGAs the distance between components is fixed and therefore the

capacitance values are predetermined. Nonetheless, some optimizations are possible with

FPGAs. For example, designs can be compiled such that nodes with high toggle rates are

placed onto shorter wires [76]. Genetic algorithms have even been applied to this

problem, such as in [77] where the mapping process attempts to place frequently

changing signals on short, low-capacitance paths within the configurable logic blocks

(CLBs) while avoiding paths that transit the relatively high-capacitance interconnect

switches outside the CLBs.

The most intriguing solutions for reducing dynamic power involve minimizing

signal transitions. Clock gating is effective at preventing signal toggling in situations

where portions of a circuit can be temporarily disabled. For example, adding a zero

detection/bypass element allows a multiplier circuit to be disabled whenever any input

value is zero [37]. Various techniques have been applied to achieve spurious toggle

reduction by avoiding calculations that are inconsequential. Guo, et al. applied such a

method to an FPGA implementation of the Viterbi decoder and achieved nearly 50%

reduction in power [73]. However, clock gating and similar techniques introduce

additional clock skew, which limits the maximum clock speed and may increase glitching

effects.

Another major cause of dynamic power consumption is glitching. Glitches occur

when unequal delay paths cause a signal to toggle several times before settling to the

desired value. As shown in Figure 3.1 below for a hypothetical circuit, these delays

cause downstream elements to undergo more toggling than a zero-delay model would

indicate. In this example, each logic gate is modeled as having a unit-delay and the input

vector is assumed to change instantaneously from (0110) to (1101) at time t=0. The

longest path passes through three logic elements, so the output is not guaranteed valid

51

until time t=3. For this example, the output F undergoes one extra low-to-high and one

extra high-to-low transition, each of which consumes extra power. This problem is

amplified as a circuit’s logic depth increases. While unequal delay through different

circuit paths is inevitable, glitching can be somewhat controlled. Pipelining, delay

equalization buffers [36] and asynchronous enable signals [78] can minimize the

propagation length of glitches in order to conserve power.

Figure 3.1 Example of Glitching Behavior

Even the choice of number representations can affect power consumption. In a

traditional two’s complement number system, when values fluctuate between small

positive and small negative numbers, many bits must toggle. Signed magnitude number

systems or offset value number systems can reduce this toggling and conserve power

[79].

Finally, as stated earlier, dynamic power can be reduced by minimizing the

number of nodes N in a circuit, which is equivalent to reducing the circuit’s size. As the

summation in Equation 3.2 is performed over fewer nodes, there are fewer contributions

to the overall dynamic power. This is the basic premise for reducing power costs in RPR

designs. Although larger circuits generally consume more power than smaller circuits,

this is not universally true. For example, pipelining increases circuit area, but can

significantly reduce glitching power [78]. Thus, assessing the relationship between

circuit size and power consumption requires careful analysis. Chapter VI shows that

1
1

1

A 0 1
B 1 1
C 1 0
D 0 1

F

ABCD

F
time 0 1 2 3 4

0110 1101

52

circuits with similar functionality and structure exhibit a strong correlation between size

and power consumption. Using several test circuits computing the same function, the

non-pipelined circuits have a roughly linear relationship between size and power. The

larger pipelined circuits require considerably more power, but are more efficient in terms

of energy usage per calculation.

C. IMPACT OF FAULT TOLERANCE ON POWER USAGE
Although the preceding sections describe power issues that apply to FPGA

circuits in general, this dissertation seeks to identify power efficient methods of achieving

SEU fault tolerance. Furthermore, this research focuses on design optimizations that can

be applied to commercially available FPGAs using current semiconductor technologies.

As explained in the previous section, this constraint implies that efforts should focus on

reducing dynamic power. If future FPGAs include features such as standby mode

switches for reducing leakage current, it will become relevant to address static power as

well.

In fault-tolerant designs, overall power consumption is strongly affected by the

type and degree of redundancy. Generally speaking, the extensive redundancy structures

needed to achieve high levels of fault tolerance consume more power. The main focus of

this dissertation is assessing the effectiveness and efficiency of the RPR architecture. It

is hypothesized that because RPR designs can be much smaller than TMR designs, the

power savings will outweigh the degradation in data precision and/or fault tolerance for

many applications.

1. Power Cost of TMR

As the most common approach for providing SEU tolerance in FPGAs, TMR

serves as a good baseline for comparing various alternatives. A full TMR

implementation includes three complete copies of the functional circuit and a voting

mechanism. Thus, one would expect that the power consumption with TMR is more than

3 times that of the unprotected circuit.

Indeed, researchers at Brigham Young University and Los Alamos National

Laboratory have confirmed that TMR designs on FPGAs require roughly triple the power

53

[9]. Their studies included both computer simulations (using precise timing models from

ModelSim combined with device models in Xilinx’s XPower software) and hardware

measurements (using a Virtex test setup called JPower built at BYU). Testing several

designs consisting of incrementers, counters, an 8-bit CPU and a QPSK demodulator,

they found a 3x-7x increase in power consumption. Much of the reason for this large

variability was due to design-placement dependencies. Better power efficiency was

observed for compact design layouts, whereas layouts with components placed far apart

consumed dramatically more power. Rollins’ [9] main conclusion was that with careful

design placement, TMR used approximately triple the power.

Their results also indicate that for smaller circuits, and especially the latest

generation FPGAs, static power dominates at low operating frequencies. Again, this is

because all portions of current FPGAs draw static current whether or not they contribute

to the circuit functionality. At low clock frequencies, there is relatively little dynamic

activity so dynamic power is less significant. At higher operating frequencies, dynamic

power dominates and the latest generation devices with small feature sizes offer better

overall power performance because of their smaller geometries.

2. Alternative Solutions
Several researchers have looked at alternatives to TMR that reduce the power cost

of fault tolerance. Some of these approaches involve modification of the underlying

FPGA architecture, while others are appropriate for use with standard devices. In

general, fault tolerance and power efficiency are conflicting goals so designers must

strike a balance in the spectrum of design options.

Maheshwari, et al., investigated architectural and circuit-level optimizations for

general VLSI circuits in [29]. Since FPGAs are essentially VLSI devices, such

optimizations are applicable to the problems investigated in this dissertation. Part of their

research compared the effectiveness and efficiency of area-redundant and time-redundant

architectures. Their dual modular redundant (DMR) and time redundant designs both

yielded a 7x-9x improvement in mean time to failure (MTTF) while consuming 2.3x-2.9x

the power of the unprotected circuit. They found that time redundancy uses less power

since it only recomputes results that fail an error check. A major concern with applying

54

their approach to FPGA circuits is the assumption that an error detection unit can be

constructed and always operated correctly. For complicated circuits the error detection

unit may be very difficult to create and will consume additional power. Furthermore, in a

radiation environment the error detector is also susceptible to faults and will not always

operate correctly.

Maheshwari also studied various circuit-level modifications, which had much less

affect on MTTF and power than the architectural approaches. They found that lower

operating voltages degraded MTTF, but improved power dissipation considerably. Using

larger sized transistors caused marginal gains in MTTF, but huge increases in power

consumption. However, these types of modifications are not possible with currently

available FPGA technology. Therefore, circuit-level modifications would be most useful

for future generations of FPGA devices.

Others have investigated the use of temporal redundancy to reduce overhead costs

of fault tolerance. In [41], a combination of spatial and temporal redundancy is used to

reduce area and input/output pin counts, and consequently the power dissipation of a

circuit. Their approach is essentially DMR with the addition of delay registers and

triplicated voters. Even though they show less area and pin usage than TMR, their

approach uses more than twice the area of the unprotected circuit. Therefore, one would

expect their design to require roughly twice the power. Furthermore, although this

approach can identify which computation unit experiences a transient fault, permanent

faults can only be detected and not isolated to a particular module. Thus, this architecture

provides much less comprehensive fault tolerance than TMR.

Another way of creating more efficient fault-tolerant designs is to optimize

particular circuit structures that occur frequently. Tiwari and Tomko studied the fault

tolerance and overhead costs of different FPGA implementations of finite state machines

[80]. By implementing state machine functions in an FPGA’s synchronous embedded

memory blocks (e.g., Virtex BlockRAM) and using a combination of parity bits and

internal/external memory scrubbing, they demonstrate lower power than a typical TMR

design using triplication of CLB logic and routing. They assume that faults in the routing

and other FPGA circuitry are corrected by configuration scrubbing. However, this

approach may allow SEU-induced errors to persist for a considerable amount of time.

55

Furthermore, although the proposed architecture saves size and power, their designs still

require between 66% and 92% of the TMR power levels.

3. Power Advantages of RPR
The reduced precision redundancy (RPR) approach presented in Chapter II holds

the promise of significantly reduced power consumption compared to TMR and other

alternatives. Lower power consumption is enabled in several ways by the RPR

architecture. First, the smaller circuits needed for the redundant modules, in general, will

use considerably less power than the full precision module. The exact amount of this

power reduction will depend on the particular computation being performed and the

degree of precision used in the redundant modules. Secondly, the inherent design

diversity in the redundant modules permits exploration of additional power optimizations

not possible with normal TMR. Since the redundant calculations can be designed

differently than the full precision calculation, there is flexibility in applying low power

techniques to each module individually. Finally, these power optimizations are easier

than in TMR since the redundant modules are smaller and simpler.

An integral part of this research is the demonstration of the potential power

savings of an RPR design. Given an original full precision circuit, the designer has

several options for the redundant calculations. First, the same methodology can be used

and simply scaled to match the data precision desired. The CORDIC algorithm (see

Chapter V) is a good example of a circuit that can be easily scaled using the same basic

architecture. Second, a table lookup method can be used if the required precision of the

approximate calculations is reasonably low (between 8- and 12-bit precision is reasonable

for the CFTP experiment). Table lookup is often impractical for the full precision

calculation due to the enormous memory requirements, but in the approximate calculation

this may be a more reasonable option. Modern FPGAs have significant on-chip memory

resources to enable such an approach. Each Virtex FPGA used on the CFTP board has

nearly 40 KB of RAM capacity, though 70% of this capacity must be shared with LUT-

based logic functions. If the remaining 30% were used for table lookup, two 12-bit

addressable 12-bit wide tables could be constructed. Third, the redundant modules can

use completely different computation methods than the full precision module. Since the

56

timing constraints will typically be limited by the full-precision module, the redundant

calculations have a relatively generous timing allotment for computing less precise

results. This opens many more possibilities for the designer. This diversity also offers

protection against certain design flaws that could lead to common-mode failures in TMR.

RPR is expected to show considerable power advantages in many applications.

The size reduction of an RPR architecture will, in theory, offer benefits in both static and

dynamic power consumption. As a rough estimate, one can assume this power reduction

is proportional to the size reduction achieved by using the smaller redundant modules of

RPR. When using current FPGA technology, however, static power is a fixed value for a

given device size. Thus RPR will improve static power only in cases where a larger

TMR design would require using a larger FPGA device. Therefore, this dissertation

focuses on techniques to reduce dynamic power using the RPR approach.

Chapter VI quantifies this power reduction for several sample designs using data

from high-fidelity power simulations. RPR versions of three different CORDIC

algorithm implementations were constructed using between 37% and 46% as much area

as the corresponding TMR versions. Power simulations reveal that the RPR circuits

require between 37% and 61% of the TMR total power levels. The dynamic power ratios

range from 32-52%. These results verify that circuit size is correlated with power

consumption, and show that reducing circuit size can effectively decrease power usage.

57

IV. DEVELOPMENT OF A TOTAL PERFORMANCE METRIC

A. OBJECTIVE
This chapter presents a methodology for assessing the relative merit of diverse

solutions to a design problem. In particular, it is suitable for comparing RPR designs to

TMR and other approaches. While stressing the importance of fault tolerance, this

methodology also accounts for practical design issues such as power consumption and

chip area. This method provides designers with a tool for selecting efficient and reliable

solutions.

B. CONCEPT
To objectively assess competing design alternatives, a mathematical framework

must be established for balancing various design parameters such as power, area,

accuracy, and reliability. The typical engineering design process begins with a set of

design constraints and focuses on optimizing only one or a few performance metrics. For

example, an engineer tasked to design an FFT processing engine is given design

specifications (usually max/min values) that dictate board/chip area, power consumption,

accuracy, latency, throughput, etc. The engineer then creates a design that meets all the

specifications (often right up to the max/min levels) and optimizes the most important

performance criteria for the design. The problem with this process is that focusing on

only one or a few key criteria, which are often determined subjectively, can obscure

potential solutions that optimize the design at a global system level. This process can be

improved by employing a more structured mathematical analysis and expanding the

number of variables that can be traded off against one another.

The key step in this kind of mathematical analysis is developing honest and

understandable cost/benefit functions. This often involves both subjective and objective

criteria. Rather than operating independently, a system engineer often works within a

team and interacts with colleagues. The expertise and experience brought by these

outside sources help formulate cost/benefit criteria that lead to a truly “optimal” system

design. By developing performance metrics like those in the following sections, the

58

system engineer creates a well-documented design process that can be discussed and

refined. As the technologies, customers, market competitors, and other factors change,

this performance metric tool can help determine the best evolutionary path for a system.

The flexible and dynamic nature of FPGAs make them particularly amenable to an

evolutionary design paradigm. Fine-grained configurability and capability for rapid

reconfiguration allow the balance between, for example, power and fault tolerance to be

dynamically “re-optimized” in FPGA-based systems.

C. TOTAL PERFORMANCE METRIC

1. Background
The use of structured methods for evaluating design trade-offs has long been

recognized as an important engineering practice. However, as noted in [38] it is

extremely difficult to combine performance criteria such as speed, power, simplicity, etc.

and produce a “single cost function” for guiding system development. Furthermore, fault

tolerance is not typically considered as simply another parameter in this trade-off process.

More commonly, in high-reliability systems fault tolerance is considered the preeminent

design goal [21]. This line of thinking can preclude solutions that involve modest

sacrifices in reliability but yield substantial gains in speed, efficiency, etc. In particular,

the impact of high-reliability (achieved with spatial and/or temporal redundancy) on the

power consumption of a system historically has not been a major concern.

In recent years, however, there has been more interest is determining and

minimizing the cost of fault tolerance. For example, a recent paper by Maheshwari,

Burleson and Tessier [29] identifies both fault tolerance and low-power as key design

objectives and proposes trade-offs between these two parameters. Their work focuses on

VLSI implementation of simple binary counters. They investigate the impacts of

including spatial/temporal redundancy, varying transistor dimensions, redesigning circuit

elements and several power reduction techniques. However, this work did not involve

quantifying fault tolerance and power on a common basis to form an all-encompassing

performance metric.

59

Wang, Ramamritham and Stankovic [81] discuss the idea of a single all-inclusive

performance metric. They present a mathematical framework for optimizing the

performance of fault-tolerant real-time computing systems. By balancing reliability

(gained through task replication) and performance (gained through task completion), an

overall “performance index” can be optimized. One of the unique observations from that

paper is that a particular computational task has both a “reward” value for being

completed and a “penalty” value when it is not completed. By quantifying these

reward/penalty values and knowing the expected processor failure rate, one can

determine the optimal degree of redundancy that maximizes the performance index.

Increasing the redundancy of certain tasks consumes limited resources, processors in

Wang’s problem, and can degrade the overall performance by inhibiting the completion

of other tasks. Though some of the assumptions, goals and constraints in [81] differ from

those addressed in this dissertation, the basic philosophy of a quantifiable “performance

index” is important in both studies.

Since every measurable performance criteria has some benefit or cost to the

overall design, it is important to quantify these values for as many metrics as possible.

The following sections and figures explain the general behavior of the most common

performance metrics. The graphs in sections 2 and 3 are not intended to represent the

relative costs/benefits for each parameter, but to show the behavior of each parameter

individually. The relative values of these parameters depend on the particular system

being developed and require careful scrutiny of the system’s overall objectives. Section 6

presents a detailed example showing how to determine relative weights for each metric.

2. Cost Metrics

Figure 4.1 shows several typical cost metrics for FPGA systems. Although many

different cost factors may be applicable to a particular design and application, the metrics

described here should be appropriate for most situations. Note that in all cases the costs

are monotonically increasing functions of each parameter. The x-axis represents the

value of each parameter while the y-axis shows the parameterized costs. The relative

importance of each cost parameter is addressed through scaling factors that can be

customized for each application. The following paragraphs explain the rationale for the

60

curves shown in Figure 4.1, based on the scenario of an FPGA-based computing system

designed for spacecraft use. This discussion could easily be extended to other

technologies and applications.

Figure 4.1 Hypothetical Cost Curves

The physical area of a circuit is important because in space applications circuit

board area and total volume must be conserved to meet system-level constraints. Circuits

that use very little area can be more easily accommodated in the system and allow other

functions to share a single board and/or chip. The linear portions of the curve indicate

that as a circuit grows it consumes more of the finite resources in the FPGA and prevents

other functions from being integrated into the same chip. The discontinuities in the curve

occur when a design exceeds the capacity of a certain chip and requires the use of the

next larger device in the product family. At each break in the curve, the design moves

into a larger and more “costly” FPGA. This may require using a more advanced chip

with an equal footprint but higher price, or an entirely different package requiring board-

level redesign.

Pin count is often another significant constraint [41] and its cost curve behaves

similarly to that of area. The discontinuities in the curve represent jumps when switching

between various devices in a particular product line. For example, Xilinx’s Virtex

XCV600 products (all containing the same internal semiconductor device) are

commercially available in 240-, 432-, 560-, 676- and 680-pin packages. Pin count is

becoming even more of a concern as semiconductor device technology is shrinking at a

faster rate than I/O pin density is increasing. Circuit functionality is generally

proportional to chip area, whereas pin count is usually proportional to a chip’s perimeter.

Area/Pin

Power

Latency

C
os

t

61

Designers have attempted to get around this with unique packaging techniques, such as

ball grid arrays (BGAs), although even BGA designs are limited by the physical size of

the solder balls and routability from the chip to the package exterior [82]. Despite

packaging innovations, I/O pin count continues to be a limiting factor.

Power consumption is an especially significant concern in remote applications

such as spacecraft. The cost of using more power typically increases linearly. As a

circuit consumes a larger fraction of the spacecraft power budget it prevents other

subsystems from receiving the necessary amount of power. At some point the circuit will

require more power than is available and the power cost will skyrocket, as shown on the

graph as a discontinuity. As an extreme example, the circuit may need more power than

the entire spacecraft power system can supply, requiring drastic and costly measures such

as increasing the size of the spacecraft solar panels.

Another cost factor is a circuit’s latency, or the time required to produce a desired

result. A similar metric is throughput, which is the number of calculations completed in a

given time period. While throughput is most easily thought of as a benefit, latency is

more identifiable as a cost. Although latency and throughput are closely related, it may

be instructive to consider them separately. For example, in pipelined systems high

throughput may be sustained by high clock speeds even though very long latencies from

“deep” pipelining produce results many clock cycles after the inputs are given to the

circuit. In non-pipelined systems long computation periods directly affect throughput by

limiting the total number of results that can be produced in a finite time period. Whether

it is appropriate to account for latency and throughput separately depends on the

particular system being considered.

At low latency values this cost is best represented as a linear function, but at

longer latencies the cost rises quickly since many systems require rapid data processing

in order to work well. This behavior can be best captured by an exponential shape, as

shown in Figure 4.1. For example, control systems are often most effective when latency

is minimized. A control system can tolerate some latency with relatively little cost or

degradation. However, extremely slow computations may require significant redesign of

the control system, such as including prediction algorithms to anticipate the system state

when control commands are actually issued.

62

Combining these various costs, the total cost metric in this example is defined as:

 latencypowerpinareatotal CCCC ++= + (4.1)

The optimal, but unrealistic, design cost would be zero. Zero cost can be achieved only

with a design that requires no area or I/O pins, consumes no power, and produces results

instantaneously. In reality, all circuits have some non-zero cost associated with them.

Cost metrics other than those described here may be more significant to a particular

problem and can augment or replace terms in the preceding equation. In addition, the

cost functions for a particular situation may not follow the shapes presented here.

Therefore, it is important to identify the appropriate cost metrics for a given situation and

make reasonable assumptions about their functional behavior. This information can then

be combined with the benefit functions described below to generate a total performance

metric.

3. Benefit Metrics
Benefits can also be described in terms of various performance metrics for a given

design. Continuing with the scenario of a spacecraft computer, Figure 4.2 shows some of

the more common benefit measures. Similar to the cost functions, each benefit term is

assumed to be monotonically increasing. The following paragraphs describe each of

these in more detail. These benefit metrics are appropriate in most situations and can

easily be augmented with other parameters important to a particular design.

Figure 4.2 Hypothetical Benefit Curves

B
en

ef
it

Reliability

Throughput

Precision

63

A critical performance metric in this research is reliability. Reliability can be

defined and measured in many ways, such as mean time to failure (MTTF), mean time

between error (MTBE), or probability of survival [40]. This dissertation assumes that

faults result only from SEUs. A standard assumption is that SEUs are random,

uncorrelated events that follow a Poisson distribution [17] due to the interaction of high-

energy particles with the semiconductor device. The reliability metric must account for

this random process. A key part of estimating reliability is knowing the probability of

experiencing a certain number (k) of SEUs in a given time interval (t), as given by [17]:

 () () rate SEUmean with
!

, ==
−

λλλ
λ

k
ettkp

tk

 (4.2)

In order to prevent the accumulation of SEU-induced faults in FPGAs,

configuration scrubbing must be employed. The Xilinx Virtex FPGA family used in this

research is capable of on-line partial reconfiguration, which permits rapid correction of

configuration faults. Coupled with fault detection circuitry, this capability ensures that

the system returns to its original fault-free condition soon after each SEU. Therefore,

MTBE (MTBE = MTTE + MTTR) may be an appropriate metric since it considers both

the fundamental failure mechanism via MTTE (mean time to error) and the recovery

mechanism via MTTR (mean time to repair) [40]. In most orbital regimes MTTE is

much longer than MTTR and therefore either MTBE or MTTE could be used.

As shown in the figure, the reliability term shows a strong logarithmic-like

behavior. At lower reliability levels, there is very little benefit from a system that fails

often, but the benefit increases sharply for even modest increases in MTBE. At higher

levels, the relative benefit of increasing MTBE tapers off considerably. For example,

there would probably be little to gain from increasing a spacecraft computer’s MTBE

from 100 years to 1000 years since even long-lived spacecraft only last 10-15 years.

Since the primary purpose of a computer circuit is to provide output values based

on some function of the inputs, an essential metric is the quantity of results produced, or

throughput. Implicit in the concept of throughput is the assumption that each solution

produced is accurate. For our purposes, accurate means the result is a true representation

of the error-free calculation to the circuit’s designed level of precision. As shown in the

figure, the system derives more benefit when the circuit provides more results. This

64

relationship is usually linear, though it is possible that the “law of diminishing returns”

would be seen beyond a certain point. For example, increasing the refresh cycle on a

computer display from 60 Hz to 100 Hz provides essentially no additional benefit

because the human observer can’t distinguish frame rates above 30 Hz. Another feature

to note from the figure is that at the lower performance levels the benefit may actually be

negative. This reflects the fact that often there is a minimum acceptable performance

threshold. Below this threshold, it would be better to not even use the computer. For

example, consider a computerized automobile data display that calculates speed, gas

mileage and range-until-empty. If due to some terrible engineering oversight, the range-

until-empty calculation was only updated on January 1st of each year, consumers would

probably rather not have that feature.

Another key performance criteria is the precision of outputs. With few

exceptions, more precise results are better than less precise results. This benefit term also

generally has a minimum threshold and an improvement roll-off at higher levels, as

shown in the figure above. The shape of this curve could change depending on the units

chosen. For example, if precision is measured in terms of real numbers, the function may

be mostly linear over most of its range. However, if precision is measured by number of

binary digits in the number representation, then the curve may look more exponential.

Combining these various benefits, the total benefit metric is given by:

 yreliabilitprecisionthroughputtotal BBBB ++= (4.3)

As written above, this function theoretically has no upper bound. However, as explained

earlier, all of these terms have an asymptotic upper limit that constrains the total benefit

function.

4. Total Performance Metric
Combining the various benefits and costs from the preceding sections, an overall

total performance metric (TPM) can be defined as:

 ∑−∑=−=
costs

j

benefits

i

N

j
jC

N

i
iB CKBKCostBenefitTPM (4.4)

65

This general expression allows the inclusion of factors in addition to or instead of those

described earlier. In order to relate these diverse parameters, scaling factors K are

included to reflect the relative importance of each term. The overall performance value is

extremely sensitive to these scaling factors, so they must be determined with great care.

Costs and benefits can be evaluated in terms of average values or cumulative

values over some finite time interval. The detailed example that follows is based on an

average value formulation whereas the approach taken in [81] follows the cumulative

value formulation. The cumulative value approach works well in [81] since the authors

have a well-defined task set of finite size. The average value approach works better with

metrics such as power and throughput that are already defined as average values.

5. Example 1: Generating TPM (Satellite Attitude Control)
Assume that a satellite attitude control system requires a coprocessor that

calculates the trigonometric functions sine and cosine to determine commands for

maintaining satellite orientation and stability. The top-level design specifications for this

hypothetical example are as follows:

 precision < 10-9
 speed > 1 MHz
 power < 1 W
 size < ½ of a Virtex XQVR600 FPGA

The design team for this coprocessor has identified the following as the most

significant performance factors: speed, precision, reliability, area, latency and power. In

order to quantify the trade-offs between various design choices, each performance factor

is translated into mathematical expressions as described below.

The physical size of the circuit must be less than half of the predefined FPGA

device. Such a specific constraint could be negotiable if the subsystem designers have

convincing arguments demonstrating that another device provides better overall

performance or that a slight increase in area usage yields improvement in other factors.

Nonetheless, the normalized area cost can be expressed as a linear function as discussed

in Section 2. By measuring area as a fraction of the total FPGA resources, area cost is

given by the expression below. The scaling factor α ensures that the area cost equals one

66

when the area usage is at the design spec of 1/2. Normalizing costs and benefits allows

the relative importance of each criteria to be easily adjusted using the scaling factors K.

 2 with == ααACA (4.5)

Though not explicitly given as a design specification, a latency requirement can

be inferred from the speed requirement. Taking the inverse of 1 MHz and assuming a

non-pipelined circuit, one derives a maximum latency of 1 microsecond. However, this

derived value may not adequately address the total system needs. Further discussions

with the satellite control system design team are necessary to determine whether longer

latency may be acceptable, in which case pipelining may be an option. Prior to these

discussions, however, a linear latency cost function can be used. With cost normalized to

1 at the derived design spec of 1 µsec, the following function is used:

 16 sec 10 with −== λλLCL (4.6)

The power requirement is fairly straightforward, though this may also be

negotiable. Assuming that the circuit’s power consumption is reasonable, the power cost

function should follow the linear portion of the curve shown in Figure 4.1. As discussed

in Chapter III, dynamic power is often directly related to circuit size. Although static

power is constant for a given FPGA device, the fraction of static power attributable to a

particular function can also be related to that function’s size. A linear relationship

between area and power is used to simplify the analysis. Normalizing the cost at 1 watt

of power consumption leads to the following relationships:

AC
AP
PC

P

P

πφ
φφ

ππ

=
==

== −

 W2 with
 W1 with 1

 (4.7)

To evaluate the first benefit factor, speed is seen as synonymous with the

throughput parameter from Figure 4.2 above. It is assumed that every result produced by

the circuit is correct. The possibility of faulty solutions is subsumed in the reliability

factor derived later. Various functions could be used to reflect the key features of a fairly

linear behavior at low values and an asymptotic behavior at high values. The formula

below is useful because it allows simple manipulation of slopes, “breakpoint” and

67

asymptote level. This equation is normalized to 1 at a solution rate of 106 per second and

the asymptote βS was arbitrarily chosen as 2. For simplicity, the constants are defined by

small integers that create a curve reflecting the benefit’s anticipated behavior as speed

increases. When using this method for a specific application, these constants must be

carefully defined based on the particular specifications and behavior of the design.

 -610,3,3,2 with ====⋅−= − σηβηβ σ bbB SS
S

SSS (4.8)

The next benefit factor to address is numerical precision. From the design spec of

better than 10-9 accuracy, the circuit must calculate results with at least 30 bits in the

fractional part of each number. Thus the formula for precision is normalized to 1 at the

level of 30 bits. Below 30 bits of precision, the value drops quickly as the control system

loses the ability to make precise attitude and orientation decisions. However, above 30

bits there is little more to gain since the attitude/orientation sensors and actuators become

limitations at such high levels of precision. Thus an asymptote of 1.2 was selected since

there is relatively little room for improvement beyond 30 bits. The following equation

serves as a starting point for assessing the benefit of high precision. In the equation N is

the number of fractional bits in each solution. The exact shape of the curve is sensitive to

the exponent base as well as the asymptote and scaling constants.

 033.0,20,4,2.1 with ====⋅−= − νηβηβ ν bbB NN
N

NNN (4.9)

The final parameter to quantify is reliability, which was not specified as an

original system requirement. Thus, additional information will be needed for the final

system design. In the absence of details, however, a preliminary reliability estimate can

be made based on the following assumptions. The only reliability issue considered is

radiation-induced logic upsets (i.e., SEUs), though additional issues could easily be

included. Reliability is measured by the mean time between error (MTBE) and errors are

assumed to occur whenever an SEU affects a non-redundant portion of the circuit. Since

the satellite control system operates continuously, the sine/cosine coprocessor needs to

operate constantly throughout the satellite’s lifetime of roughly 10 years. Finally, it is

assumed that most errors cause serious, but not catastrophic, problems. Calculation

errors in the sine/cosine coprocessor can necessitate a time-consuming reorientation of

68

the spacecraft and subsequent mission interruption, but they are not expected to lead to

total loss of the spacecraft.

These assumptions are used to formulate an equation describing the benefit of

reliability. At low reliability levels the system will require frequent reorientation

maneuvers, preventing the spacecraft from conducting much of its mission. High

reliability is obviously good, though extremely high reliability may not be cost effective

compared to more modest reliability levels. Over a 10-year mission lifetime it is

reasonable to assume that a small number of recoverable errors, for example one per year,

is acceptable. Thus the reliability benefit function given below follows an inverse

exponential curve and is normalized to 1 for a MTBE of one year. With adequate fault

masking, it is reasonable to expect MTBE values in the range of months or longer in LEO

environments and shorter MTBE in higher radiation environments.

 1year 1,6,2.1,2.1 with −− ====⋅−= ρηβηβ ρ bbB RR
R

RRR (4.10)

Combining all 6 benefit and cost factors explored in this hypothetical example,

TPM is given by:

 PCLCACRBNBSB CKCKCKBKBKBKTPM
PLARNS

−−−++= (4.11)

Note that TPM is a unitless quantity since the benefit and cost terms are all normalized

quantities.

The final step in generating the total performance metric is to establish the

relative importance of each factor by determining the scaling factors K. A starting point

might be to assume that all factors are equally important, in which case each K can be set

to 1. More realistically, some factors are more important than others. For illustrative

purposes, Table 4.1 presents scaling factors for three different prioritization schemes.

Scheme A assumes all factors are equally important, Scheme B emphasizes reliability,

and Scheme C emphasizes precision.

69

Prioritization Scheme Factor
A B C

Speed (S) 1 1 0.5
Precision (N) 1 1 2
Reliability (R) 1 2 1

Area (A) 1 0.5 1
Latency (L) 1 1 0.5
Power (P) 1 0.5 1

Table 4.1 Possible Cost/Benefit Prioritization Schemes

For illustrative purposes, the figure below shows the behavior of each parameter

using the scaling factors from prioritization scheme B. The x-axis labels represent

various levels of each parameter relative to the design specification or derived

requirements discussed earlier. For example, “1x Spec” corresponds to:

 speed = 1 MHz
 precision = 10-9
 reliability = 1 year MTBE
 size = ½ of a Virtex XQVR600 FPGA
 latency = 1 µsec
 power = 1 W

Figure 4.3 Hypothetical Functional Behavior of TPM Components

-0.5

0

0.5

1

1.5

2

2.5

3
Components of Total Performance Metric

C
os

t o
r B

en
ef

it

70

Though interesting, this figure cannot be used directly to make trade-offs between

the various design parameters. One cannot simply move along each curve independently

since the parameters are strongly related to one another. In this example, area and power

have a simple linear relationships. However, the interactions between power-reliability

or precision-latency, for example, are difficult to anticipate accurately. With a practically

infinite design solution space, an exhaustive analysis is impractical. Instead, it is more

reasonable to investigate a small number of points that span the design space. The results

from these early predictions can help focus and refine the more detailed design and

analysis work.

To conclude this example, the TPM is calculated for several plausible design

solutions using each of the prioritization schemes listed in Table 4.1. Based on some of

the assumptions used in this example, the design space can be divided into four factors.

Table 4.2 below lists the factors used in this analysis and the TPM values calculated from

the equations derived above. Since area and power are directly related in this example, a

single “size” factor can be used, with “large” meaning a circuit twice the specification

value and “small” meaning a circuit half the specification value. For simplicity, latency

and throughput can likewise be combined into a “speed” factor. Thus “fast” corresponds

to latency of half specification and throughput of twice specification, and “slow” means

these terms are swapped. Precision and reliability cannot be easily combined with other

factors, so they are treated separately. For these two factors, “high” represents twice the

spec and “low” means half the spec. For added realism, the shaded regions in the table

represent design points that the engineering team predicts cannot be achieved. Thus these

TPM values are unattainable. From the remaining design options, the best designs for

each prioritization scheme are highlighted.

71

 Low Reliab. High Reliab.

 A B C A B C

Slow -1.7 -0.5 -0.6 -1.3 0.4 -0.1
Small

Fast 1.2 2.4 0.9 1.6 3.3 1.3

Slow -4.7 -2.0 -3.6 -4.3 -1.1 -3.1

Low

Precision
Large

Fast -1.8 0.9 -2.1 -1.4 1.8 -1.7

Slow -0.8 0.4 1.2 -0.4 1.3 1.7
Small

Fast 2.1 3.3 2.7 2.5 4.2 3.1

Slow -3.8 -1.1 -1.8 -3.4 -0.2 -1.3

High

Precision
Large

Fast -0.9 1.8 -0.3 -0.5 2.7 0.1

Table 4.2 Hypothetical TPM for Various Design Points

6. Example 2: Determining K Factors (Satellite Image Processing)
As highlighted in the previous example, the scaling factors K heavily influence

the TPM. Different K weighting schemes lead to different conclusions about which

solution is optimal. Therefore it is important to determine them carefully based on the

context of the particular design problem. The K factors serve two primary roles. First,

they influence the slope of the TPM as a function of each parameter around the nominal

design point. Secondly, they establish the relative value of the cost/benefit parameters at

extreme high/low values. The following example describes in more detail the types of

considerations that help establish these K factors. Keep in mind that the K values could

differ greatly for a given design depending on the application.

In this hypothetical example, the task is to build an image compression processor

for a commercial satellite imaging system in order to reduce the data downlink bandwidth

requirements. The satellite’s main function is to collect visible and infrared images of

specific ground locations for customers such as governments, regulatory agencies,

farmers and private landowners. The business model for such a product has been well

established by satellite operators such as Space Imaging (IKONOS) and DigitalGlobe

(QuickBird). In this scenario there is a strong financial motivation for developing cost

effective solutions. Therefore it is worth considering options that may sacrifice some

degree of reliability or precision in order to reduce the costs involved. On the other hand,

72

it is important to sustain the collection, processing and delivery of imagery products. The

company can only make money as long as it continues to provide images to customers.

The same performance factors used in the previous example are also applicable to

this design. Similarly, the reliability efforts here focus on tolerating radiation-induced

SEUs. A plausible prioritization scheme for the TPM factors is listed in Table 4.3. The

following paragraphs explain the reasons for assigning these particular K values.

Factor Scaling Factor
(K)

Throughput 40
Reliability 10
Precision 8

Power 2
Area 2

Latency 1

Table 4.3 Example Cost/Benefit Relative Weighting Factors

The following discussion focuses on the behavior of each parameter around the

nominal design solution, called the “1x Spec” point in the previous example. The

baseline specification is given as:

 throughput = 1 Hz
 reliability = 90%
 precision = 16 bits
 area = 1 Virtex XQVR600 FPGA
 power = 5 W
 latency = 1 sec

For simplicity, assume that all parameters behave linearly and with equal slopes

near this point. Thus only the K factors alter the slope of each cost or benefit term. For

example, the K values determine whether or not a 10% improvement in precision is more

beneficial than a 10% improvement in area.

Throughput is the most important design criteria. As mentioned earlier, the

mission of the spacecraft is to produce images, thus the ability to maintain a high data

rate is essential for maximizing revenue. A large K value for this factor ensures that the

design does not sacrifice throughput. The value 40 that appears in the table, though

73

arbitrary, was selected to accommodate integer values for the remaining K factors. There

is no requirement that integers be selected for these scaling factors, but they are used here

for simplicity.

Reliability is the second most important parameter since low reliability can lead to

several negative consequences. First, it degrades the satellite’s ability to collect and

transmit images on demand and therefore reduces the effective data throughput. If

failures coincide with actual imaging operations, valuable image data will be lost.

Additional data collections may need to be scheduled for subsequent orbits in order to

satisfy customer demands, which in turn will limit the number of customer requests that

can be satisfied. Furthermore, customers may become displeased and turn to other

service providers.

In this hypothetical system, a 90% reliability is required by the baseline system

specification. Thus for every 100 images collected, 90 of them should be properly

processed and transmitted. The following figure shows what happens to the data output

rate when the processing throughput and reliability are individually reduced to one-half

the specification level. As can be seen, reducing throughput by half while reliability

stays at 90% causes the data rate to drop to 45 (a decrease of 45 images). By comparison,

a reliability reduction of half while throughput remains at 100 decreases the data rate to

80 (a decrease of 10 images in the same time interval). The slope for throughput should

be steeper than for reliability since its impact was much greater (reducing the data image

rate by 45 versus 10). Therefore for this application, reliability is assessed to be roughly

one-quarter as important as throughput, and is assigned the K value 10.

Figure 4.4 Hypothetical Benefit Curves

Im
ag

e
R

at
e

45

 8

0
 9

0 Reliability

Throughput

0.5x Spec 1x Spec

74

Precision is an important TPM component in this example since it determines the

quality, and therefore value, of the images produced. Considering that different

customers have different image quality requirements, a price scale is established with

reduced prices for lower quality images and premium prices for the highest quality

images. At the baseline precision level of 16 bits, the price is $5000 per image. A

discounted price of $4500 per image is offered for 8-bit resolution. This price reduction

of $500 can be considered lost revenue. An equivalent reduction in revenue would occur

if throughput were decreased by 10%, from 1 Hz to 0.9 Hz. To properly weight the

precision term, a K factor of 8 is required.

Power and area are less important for this application than they typically are in

satellite systems. The amount of power and area needed for this image compression

processor are small fractions of the overall satellite resources. On this hypothetical

satellite the solar panels generate an average of 500 watts, thus even large increases in

this processor’s consumption require only modest upgrades. A doubling of the

processor’s power usage from 5 W to 10 W requires a 1% increase in solar panel

capacity. Putting this into financial terms, assume that the solar panel subsystem for the

spacecraft costs $1M and that a 1% increase in output can be achieved for an additional

$10,000. For comparison, an advanced semiconductor processing technology that

improves the SEU immunity of the device can be purchased for $10K. This new device

will reduce the probability of error from the baseline design level of 0.10 to 0.08, a 20%

improvement. Thus, in this simple example a 100% increase in power and a 20%

increase in reliability have equal monetary value. Since reliability has a K value of 10,

power should be assigned the value 2 to ensure proper scaling between these terms.

Similarly, since this processor is allocated a single FPGA chip that occupies a

small percentage of the total satellite volume, modest increases in chip area are possible.

If the design requires more circuitry than the baseline FPGA provides, it is also possible

to switch to a newer, more dense device since the cost of FPGAs is small compared to the

total program cost. Putting chip area into financial terms, assume that upgrading from the

baseline FPGA device to one with twice the logic capacity costs $10K. Following the

rationale for the power K factor, the K value for area is also 2.

75

Latency is the least important factor since customers for this type of satellite

imagery typically have no demand for real-time data. Although zero latency is ideal,

reasonable amounts of latency cause little degradation. In this application, the main

forces limiting latency are on-board data storage and ground station access periods during

which data is downlinked. Some amount of data buffering can be included in the design,

but a large amount of data storage on the satellite is undesirable. A nominal latency

value of 1 second is specified to match the data collection rate of 1 Hz.

For this example, assume that the satellite operations procedure includes the

collection of a second image of each ground location, if necessary. If the first image is

corrupted by clouds, sensor noise or smearing from satellite vibration, the second image

is collected. The decision whether or not to collect this second image is based on an

automatic quality check on the fully-processed first image. This quality check must be

made within 40 seconds to ensure the satellite does not pass beyond view of the target. A

latency of 40 seconds or longer means that the second image must be collected on every

target, which is equivalent to reducing the throughput by half. Thus a K value of 1

provides the proper weighting of this parameter.

7. Accounting for Reliability Factors
One potential problem with the parameter set described in the preceding sections

is improper accounting of reliability. Reliability is treated as a separate benefit factor,

although it can influence both the “throughput” and “precision” factors. If errors are

infrequent it is acceptable to consider reliability separately and ignore reliability when

estimating these other factors. As errors become more common, however, it may be

more appropriate to include reliability in the throughput and/or precision factors.

It is easy to see that errors decrease the number of correct solutions produced by

the circuit. Thus, instead of having a separate factor, reliability could be accounted for by

adjusting the expected number of correct solutions. Reliability also influences the

average numerical precision. If an RPR implementation is chosen to achieve fault

tolerance, some SEUs will not lead to failure but will cause the circuit to produce

solutions with less than the full precision. If this happens rarely, the system receives

nearly the same quality of service as with a more comprehensive redundancy structure,

76

such as TMR. However, if this happens relatively often, the quality of service is

significantly degraded. One could account for this quality factor by measuring the

precision of each solution. The variable N in Equation 4.9 could represent the total

number of fractional bits (i.e., precision) for all correct solutions produced in a finite time

period.

SEUs in space are fairly rare in most orbital regimes. The average time interval

between SEUs range from minutes to hours [17] depending on altitude as well as solar

activity and geomagnetic conditions. In geosynchronous orbit, Bridgford predicts that

current FPGA devices such as the Xilinx Virtex-II will be affected by 1 to 30 SEUs per

hour [83]. Furthermore, such devices may experience SEFI-type events (i.e., SEUs that

lead to errors requiring complete device reset and/or power cycling) only once in 60 years

of continuous operation [83]. It would be meaningless to apply such low error rates over

short timescales. In a one second period there is an extremely low probability of

experiencing an SEU-induced error. Assuming a Poisson distribution of SEU arrivals

[17] and an average SEU rate of 1 per hour, the probability of experiencing at least one

SEU in a one second period is only 0.000278. Thus the expected throughput would be

reduced from 1,000,000 to 999,722 calculations per second and precision reduced from

30 to 29.99 bits. Such small numerical effects do not adequately capture the importance

of high reliability in this situation.

Properly accounting for reliability in the total performance metric is challenging

and can be approached in various ways. Assigning a benefit value to various levels of

reliability, as done above, is appropriate for most situations. Determining a reliability

benefit value is impractical for certain applications, so alternative methods should be

considered. One approach is to create a family of cost-benefit isocurves for various

levels of reliability as shown in Figure 4.5. Each isocurve plots the lowest cost (x-

coordinate) design that achieves the corresponding benefit (y-coordinate), where the total

benefit value is summed over the remaining benefit terms once reliability is isolated. The

system designer can examine this family of curves to find efficient design options that

meet the desired reliability level, similar to goals stated in [43]. The knees in the curves

in this figure are likely to be the most efficient design points.

77

Figure 4.5 Conceptual Reliability Isocurves within Cost-Benefit Design Space

D. MEASURING RELIABILITY
Whereas it is relatively straightforward to measure performance factors such as

speed and power, determining the reliability or fault tolerance of a design can be

challenging. The first step is deciding which kinds of faults are expected. Should the

designer be concerned with only transient faults such as SEUs, or also permanent faults

due to device fatigue and burnout? This dissertation focuses on transient faults in an

FPGA’s configuration memory caused by SEUs. However, in critical applications such

as life-support systems, all types of faults and failures should be considered [40].

Once the class of faults has been defined, the next step is to estimate and/or

measure the system’s response to each possible fault. This step can be very complicated

considering the size and complexity of modern electronic systems. For example, in the

Xilinx Virtex XQVR600 device there are over 3.3 million configuration bits that can be

upset by SEUs. If one considers the possibility of multiple simultaneous SEU-induced

faults, the problem quickly becomes intractable. For example, there are over 5*1012

possible two-SEU combinations in the Virtex device! There is no reasonable way to

exhaustively simulate or test each of these combinations. Virtually all FPGA fault

tolerance studies consider only individual SEU effects. To date, the only thorough work

with multiple SEUs in FPGAs has mainly involved SEUs affecting physically adjacent

bits on the device [84]. However, the preponderance of SEUs affect only a single bit.

Therefore the fault model assumed in this dissertation is a single SEU-induced bit flip in

Benefit

Reliability=0.85

Cost

0.90

0.95
0.99

0.999

78

the FPGA configuration memory. All possible single bit upsets should be thoroughly

analyzed.

The system’s response to each fault must be carefully monitored and categorized

as either error-producing or non-error-producing. Many researchers use the terms

“sensitive” and “non-sensitive” to characterize particular configuration bits in an FPGA

design [4], [42]. A sensitive bit is an FPGA configuration bit that causes errors in output

data when corrupted by an SEU. Certain data errors may only be manifested when

particular input data patterns are applied to the circuit [4]. Therefore some faults may

appear to be non-error-producing if testing involves only a small selection of possible

inputs. With large input vectors in some circuits, such as a 32-bit multiplier, it would be

extremely time consuming to test every possible input data combination. Thus, a

compromise must be reached between testing a small number of inputs and testing every

possible input combination.

Sensitive bits can be further categorized as either “persistent” or “non-persistent”

according to whether their impact persists after a configuration scrub [5], [8], [42], [85].

A persistent error, such as corruption of the contents in a finite-state machine, requires

rewriting the configuration memory and resetting the system. Therefore SEU sensitivity

experiments must be carefully constructed to identify and correct persistent errors as they

occur. Otherwise the long-term effects of persistent errors make it difficult to evaluate

subsequent faults. After analyzing all configuration bits for a particular FPGA design,

the overall configuration sensitivity can be calculated as the percentage or total count of

sensitive configuration bits. The fault tolerance of various designs can compared based

on this overall sensitivity. Those with lower configuration sensitivity are likely to be

more SEU-tolerant.

Another challenge is deciding whether a particular fault/error leads to operational

failure or a lesser degree of system degradation. For example, in an RPR implementation

many faults are likely to degrade the precision of output data. Should this situation be

considered a true operational error? Perhaps an isolated occurrence of imprecise outputs

is acceptable, but frequent and/or numerous consecutive events might be unacceptable.

The final step is to estimate the system’s reliability by predicting its response in a

realistic environment. This calculation is based on anticipated fault rates (due to factors

79

such as radiation levels) and the probability that faults in the device will lead to error

conditions. High reliability can be achieved if the radiation conditions are benign or the

device has low susceptibility to error-producing faults. Conversely, low reliability occurs

when the radiation environment is high and the device is likely to produce errors from

many fault conditions.

1. Assumptions
The intent in this dissertation is to compare the relative reliability of various

designs rather than calculating absolute reliability or fault tolerance values. Therefore

SEU sensitivity, based on the number of configuration bits capable of causing errors, is

an adequate metric for comparing the reliability of different FPGA designs. The

following two sections provide additional background information on several aspects of

determining absolute SEU rates in space.

This analysis does not address the issue of varying SEU susceptibility of different

FPGA structures. As studied by Ceschia [44], the energy spectrum of radiation particles

influences the statistics of SEUs on an FPGA. For example, Ceschia found that LUT

configuration bits on the Xilinx Virtex XCV300 device were the most sensitive and could

be upset by relatively low-energy particles. Therefore, a more accurate reliability

estimate can be achieved by considering the radiation spectrum in the operating

environment. Data from [44] shows roughly a factor of 2 difference between the most

sensitive and least sensitive FPGA elements.

Nonetheless, sufficiently accurate results can be achieved by assuming equal

sensitivity for all FPGA configuration bits. Most work in the literature, such as [86],

does not consider energy-dependent bit susceptibility since there are larger sources of

uncertainty in reliability predictions. For example, the actual space radiation

environment is not precisely known and varies significantly in time. Furthermore, the

complex interaction within FPGA circuits causes considerable variability in measured bit

sensitivity between different design configurations [6]. For purposes of comparing the

reliability of competing designs it is usually safe to assume a uniform SEU susceptibility.

Most designs with similar functionality use similar proportions of LUT, MUX, routing,

80

etc. elements [1]. Thus, the relative reliability of various design implementations can be

assessed fairly by assuming all configuration bits are equally susceptible to radiation-

induced upset.

2. SEU Rates in Space Environment
The space radiation environment consists mostly of ions and protons of varying

energy levels. As discussed in [17], different equations govern the heavy ion response

and proton response of microelectronic circuits. Fortunately, most satellite orbital

regimes are dominated by one radiation source or the other. Thus predictions of on-orbit

performance can focus on the radiation source appropriate for the spacecraft orbit. At

geosynchronous altitude (36,000 km) the predominant effect is due to cosmic rays, which

are highly energetic ions of solar and extra-solar origin. At lower altitudes, in particular

within the lower Van Allen belt which peaks at around 10,000 km [17], [87],

magnetospherically-trapped protons dominate. Some typical formulas used for ion and

proton SEU rates as presented in [17] are given below:

 () ()()∫ Φ=
max

max5.22
25.22

L

sQ
caion

c
L

dLLscLQf πσ (4.12)

 () () ()∫ Φ=
∞

A
ppproton dEEEAAf ,σ (4.13)

SEU rate depends strongly on the device’s geometry, composition and other

physical parameters. Parameters such as Qc (critical charge) and σp (proton SEU cross

section) can be estimated analytically or, more often, measured experimentally. Smaller

circuit dimensions and reduced transistor switching energy in modern microelectronics

make new devices much more susceptible to direct proton-induced SEU. Messenger and

Ash [17] estimate that as device feature sizes drop below 0.3 µm, this direct SEU

phenomenon will increase dramatically. Figure 4.6 shows estimated SEU rates for a

notional 64 Mbit memory module in a particular orbit as the critical charge, which is a

strong function of circuit dimensions, is varied.

81

Figure 4.6 SEU Rates for Notional 64 Mbit Memory (from [17])

Though the equations and phenomenology governing ion-induced and proton-

induced SEUs differ somewhat, upset rates due to both sources can be simplified to the

following equation:

]
scm

particles
particles

eventscm[
2

2

×Φ⋅= radSEUSEUf σ (4.14)

Despite the simplicity of the equation, determining values for cross section and

flux involves considerable effort. Cross section must be determined for each constituent

of the radiation environment or averaged over all particles of interest. Flux can be

measured in various ways, but is typically calculated as the number of particles within a

specified energy level that pass through a given area or volume in a certain time period.

Extensive experimentation and analytical modeling have been conducted to characterize

the space radiation environment. In fact, the first US satellite, Explorer 1, was launched

82

in 1958 with instrumentation developed by Dr James Van Allen that led to the discovery

of the radiation belts. Various computer models, such as CREME (Cosmic Ray Effects

on Microelectronics) and others available within SPENVIS (Space Environment

Information System), are used extensively in current radiation effects studies. The actual

flux incident on spacecraft circuits is also influenced by spacecraft shielding effects.

Thus, environmental flux values must be adjusted using scaling factors that account for

these shielding effects.

Flux varies according to orbital altitude, inclination, and solar activity. At higher

altitudes the proton population is negligible and cosmic ray sources dominate. Radiation

levels may increase by several orders of magnitude following extremely strong solar

flares. A worst-case GEO environment during an “anomalously large solar flare” could

generate 7,740 SEUs per day in the Xilinx Virtex-II XQR2V6000 device [86]. Normal

GEO conditions would be about 1/2000 this amount [17], or about 4 per day. Estimates

for a Virtex XQV1000 device in a 560 km LEO orbit range from 0.13 to 4.2 SEUs per

hour depending on solar activity and geographic location [1].

Rough estimates of SEU rates are given in Figure 4.7, which highlights the

preponderance of proton-induced SEUs within the lower Van Allen belt. The data for

Figure 4.7 was produced in the late-1980’s and estimates orbit-dependent SEU rates of

between 10-6 and 5*10-5 upsets/bit/day [17]. Tiwari uses an experimentally-derived value

of 48*10-6 upsets/bit/day [80] based on proton radiation tests on a Virtex XQVR300

device. Somewhat surprisingly, this number is within the range of values from [17] that

were generated about 15 years earlier.

83

Figure 4.7 Typical Altitude Variation of SEU Rates for 60° Orbit (from [17])

Although actual SEU rates depend on the particular integrated circuit under study,

estimates can be made using data from similar devices. For example, Messenger

suggests that if data is not available for the device under investigation, one can use proton

susceptibility data from “part types that are alike or similar in … technology or …

function.” [17]

3. SEU Cross Section
An important measure of SEU sensitivity is the cross section. Cross section

represents the theoretical area within which a transiting radiation particle with sufficient

energy would cause an SEU. Thus a large cross section is undesirable. Cross section can

be calculated for individual bits, for various resource classes as in [44], or for entire

designs as in [6]. SEU cross sections can be derived experimentally using the following

equation from [17]:

 s]cmparticles/[events/s lim 2÷⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Φ
=

∞→−

particle

SEU

tparticleSEU

Nσ (4.15)

Cross sections for various FPGA devices have been calculated and published

extensively in the literature. For example, experiments on the Virtex 300 devices showed

a proton saturation cross section of 2.2*10-14 cm2 [88] and ion saturation cross section of

84

between 2*10-8 and 8*10-8 cm2 [44], [89] per configuration bit. When discussing cross

section values, it is important to understand the distinction between static and dynamic

cross section. As explained in [85], static cross section is measured without a clocking

signal running and is therefore independent of the design instantiated on the FPGA

device. Dynamic cross section is measured with a clocking signal driving the particular

design programmed onto the device and depends on how the design uses various FPGA

resources. Dynamic cross section can be calculated by multiplying the static cross

section by the ratio of sensitive configuration bits to total configuration bits.

4. Reliability and Mean Time Between Error
MTBE, the reliability measurement needed for the total performance metric, can

be estimated from cross section and SEU rate data. Equation 4.16 shows that MTBE is

simply the product of the SEU rate and the sensitive cross section fraction. The SEU rate

is determined by the orbit parameters and the physical behavior of the FPGA device. It

may be estimated directly from data such as that presented in Figure 4.7 or determined

from the radiation flux and circuit dynamic cross section. Since the dynamic cross

section is design-dependent, it is the key parameter for comparing the reliability of

different designs. Depending on what data is available, one of the equivalent formulas

below can be used.

 dynamicrad
static

dynamic
SEUfractionSEU ffMTBE σ

σ
σ

σ ⋅Φ==⋅= (4.16)

It should be noted that configuration scrubbing is required to ensure that this

equation is valid. The preceding MTBE calculation assumes that the FPGA circuit is

reconfigured soon after the onset of an error-producing SEU. Configuration scrubbing is

essential in FPGA design to prevent the accumulation of SEU-induced faults [85].

Scrubbing can be scheduled periodically or can be performed in response to detected

faults/errors [42], [85]. In either case, the scrub rate should be considerably faster than

the SEU rate to minimize the possibility of multiple SEUs affecting the circuit

simultaneously. Nearly all current efforts in FPGA fault tolerance incorporate some form

of configuration scrubbing [6], [8], [49], [80], [85].

85

An additional class of failures that must be considered is known as Single Event

Functional Interrupt (SEFI). SEFI refers to SEU-induced faults that cause especially

disruptive and persistent problems. Often, SEFIs can only be corrected through complete

power cycling of the device. This special class of failures has been attributed to unique

components within modern FPGAs. For example, Graham [2] identifies three possible

sources for SEFIs on Virtex devices: 1) JTAG controller, 2) power-on-reset state machine

and 3) SelectMAP configuration pins. SEFI events are much less common than normal

SEUs since they can only be caused by a small number of bits on the device. However,

there are no mitigation methods for some SEFIs. Thus the probability of SEFI

occurrence sets an upper limit to the maximum achievable reliability of an FPGA design.

One method of accounting for SEFI is to augment the regular configuration cross section

value with an additional factor, as shown in the following equation [86]. The total SEFI

cross section for Virtex devices is estimated at about 10-5 cm2 [2], [86].

 SEFISEUtotal σσσ += (4.17)

5. Reliability Comparison Between RPR and TMR
Ideally, the methodology developed above could be used to assess the

effectiveness of Reduced Precision Redundancy (RPR) versus TMR in improving

reliability for FPGA systems. Unfortunately, such a comparison cannot be made in a

general sense. Since dynamic cross section is design-dependent, one must choose

specific designs to analyze. Chapter VI presents the analysis from several test designs.

However, some general observations can be made about RPR versus TMR. In addition,

when analyzing RPR reliability it is crucial to account for instances when the circuit

provides less precise, but nonetheless “correct” results. This section discusses these

general issues.

TMR failure can occur only when 1) there are simultaneous faults in 2 or 3 of the

redundant modules or 2) there is a fault in the voter circuit or related control/output logic.

The reduced precision architecture is also sensitive to simultaneous faults in multiple

modules and SEUs in the voter/control circuitry. The main drawback of RPR is that

precision is lost whenever an SEU causes an error in the exact solution. When the exact

result disagrees with the higher-confidence approximate results, the most probable

86

scenario is that a fault exists in the exact module. Since the exact module is much larger,

it is more likely that a random SEU occurred within the exact module than in another part

of the circuit. Therefore the voter should pass forward one of the lower precision results.

In contrast, a TMR design can handle single errors in any computation module without

loss of precision.

Although the more extensive redundancy of TMR might seem more reliable than

the reduced precision approach, there are some subtleties worth investigating. For

example, assume a circuit for which the exact solution occupies 1/3 of the FPGA, and

voter circuitry that is negligible in size. This second assumption will not always be valid

but simplifies the following discussion. Compare this to an RPR design that uses an

exact module occupying 1/3 of the chip area, two approximate modules that each occupy

1/30 of the chip, and a voter that is negligible. Figure 4.8 depicts the hypothetical FPGA

layouts for these designs. The most obvious difference is that the RPR design occupies

much less chip area, making it less susceptible to permanent device failures affecting

small localized regions. Another advantage of RPR is that the small approximate

modules can be enhanced with additional redundant modules and distributed voting units

to minimize the unmitigated cross section.

Figure 4.8 Hypothetical TMR circuit (left) and RPR circuit (right)

C

op
y

A

C

op
y

B

C

op
y

C

Voter

E

xa
ct

Voter

Approx A

Approx B

87

At low SEU rates, spatial redundancy with configuration scrubbing can allow a

system to continue functioning while faults are corrected in the background. At higher

SEU rates the accumulation of errors can occur faster than they can be corrected. The

TMR design in Figure 4.8 is protected against most single faults. The only single fault

susceptibility is in the voter/control/output logic. To protect against multiple faults, the

configuration scrub cycle (the time for a fault to be detected and corrected) must be less

than the time it takes for 2 modules to suffer SEUs. Though improbable, it is not

impossible for successive faults to occur within a relatively short scrub cycle. Following

a first-fault event, roughly 2/3 of the chip is vulnerable to successive faults until the

configuration scrub corrects it.

In contrast, the RPR design is less vulnerable to consecutive SEUs for two

reasons. First, it requires much less time to scrub the approximate modules, so an error in

that level can be corrected quickly before another SEU hits. Second, since it occupies

less physical area it has a smaller sensitive area (i.e., a smaller SEU cross section) and is

therefore unaffected by SEUs occurring over much of the chip. In this hypothetical

design, about half of the FPGA is unused (or used for other purposes) so roughly half of

all SEUs will not affect the computation. Of the SEUs that occur in the functional circuit,

about 90% will occur in the precise module. For the few SEUs that occur in the

approximate modules, an intelligent voter and redundancy within/between approximate

modules protect against data or configuration errors.

Finally, the reliability factor must account for the less precise outputs produced by

the RPR configuration. Though the reduced precision values provide less “benefit” than

full precision results, they nonetheless prevent the system from experiencing a failure as

it would if it received incorrect data. An intermediate “benefit” value should be

attributed to these less precise solutions. Though the probability of error with TMR

might be very low, such errors often deviate greatly from the correct result. Building

upon the cost/benefit concepts presented earlier in this chapter, one might assign TMR

answers a value of Bmax when correct or 0 when incorrect. However, with RPR it is

reasonable to define three benefit levels {0, Bmid, Bmax}. The reliability score can then be

scaled according to the anticipated frequency of precise, imprecise, and incorrect

solutions:

88

idmimprecisemaxcorrectRPRyreliabilit

maxcorrectTMRyreliabilit

BpBpB
BpB

⋅+⋅=

⋅=

−

−
 (4.18)

As an example, consider a TMR system that provides correct answers 95% of the time,

and an RPR system with 8% imprecise and 2% failure probabilities. Assuming a Bmax

value of 1 and Bmid value of ½, the reliability score for TMR is 0.95 compared to 0.94 for

RPR. Thus in this example TMR has a higher reliability score, but only by a small

amount.

These simple models do not address the possibility of failure due to the

cumulative effect of multiple successive imprecise results. For example, the hypothetical

satellite control system from earlier may be robust enough to accept imprecise solutions

1% of the time if they are distributed over time, but may drift outside a safe tolerance

range if many occur in rapid succession. Accounting for this effect would add

considerable complexity to the analysis. Since SEUs occur relatively infrequently and

configuration scrubbing is used in nearly all designs, most situations do not require this

extra complication.

E. SUMMARY
This chapter introduced a formal method for comparing the overall value of

competing design solutions using a Total Performance Metric (TPM). By considering all

relevant performance factors simultaneously, the TPM helps engineers objectively select

the most advantageous designs. Compared to conventional system development

processes that often rely on subjective evaluations, this quantitative method ensures fair

and consistent decisions. Applying the TPM approach to real-world problems can reveal

interesting trade-offs. For example, RPR designs that provide lower reliability and/or

precision than TMR may be more beneficial overall if they offer significant advantages in

power, speed, etc.

The following chapters illustrate the potential benefits of RPR by quantifying

several TPM parameters for a test circuit based on the CORDIC algorithm. Chapter V

describes the CORDIC algorithm and explains why it was chosen as the test case in this

research. Chapters VI and VII show that, although TMR has better overall reliability,

89

RPR is effective for improving reliability of the most significant bits in the circuit’s

output data. Chapter VI also demonstrates that RPR requires much less circuit area and

power than TMR designs with identical latency and throughput performance. This data

can be combined with the parameter scaling factors K to determine optimal design

solutions to real-world problems, as described in the satellite image processing example

earlier in this chapter.

90

THIS PAGE INTENTIONALLY LEFT BLANK

91

V. CORDIC ALGORITHM

A. OVERVIEW
The CORDIC algorithm was chosen as a test case for exploring the effectiveness

of the fault-tolerant and power-saving concepts from Chapters II and III. In order to

investigate these issues in a realistic scenario, a CORDIC-based sine/cosine calculator

was constructed for Xilinx Virtex FPGAs. Several designs were created that

implemented both iterative and pipelined versions with varying precision. The details of

these implementations are provided in Appendix A. These designs incorporated fault-

tolerant features to make them reliable and suitable for spacecraft computer systems. As

discussed in Chapter II, the most common fault-tolerant methods for FPGAs employ

spatial redundancy. TMR and RPR designs using the basic CORDIC processor were

built for the CFTP system to be launched into low-earth orbit in late 2006. The designs

were then tested in the lab for SEU fault tolerance and power consumption. They were

also made flexible to permit exploration of the trade space between fault tolerance, power

usage, and other performance parameters described in Chapter IV. For example, the

precision of the upper/lower bound calculations in RPR designs can be varied easily.

Changing the precision of these error bounds affects area, power, precision and

reliability. Therefore, many design options can be examined using the same basic

algorithm and architecture. This chapter describes the CORDIC algorithm and why it is

useful for investigating trade-offs between TMR and RPR fault-tolerant approaches.

1. Rationale for Choosing CORDIC
CORDIC is a good test case for numerous reasons. It is a well-known algorithm

founded on basic mathematical principles and widely used in a variety of applications. A

self-contained CORDIC module can be used in a stand-alone configuration or as a

coprocessor for larger systems such as satellite control computers. The algorithm can be

readily implemented on FPGAs [25], [34], [90]. Since most implementations include a

mixture of combinational and sequential logic, it is representative of general complex

circuits. Thus, faults in a CORDIC design can be manifested in more complicated ways

than faults in a trivial circuit. In addition, CORDIC circuits can be built as either iterative

92

or pipelined designs of varying wordlength in order to balance criteria such as

throughput, size, and accuracy. Such designs can be easily scaled to occupy the desired

fraction of an FPGA to effectively investigate power usage and fault tolerance.

A CORDIC processor better reflects the kinds of circuits used in real-world

systems because it has more complicated input/output relationships than simpler circuits,

such as the small binary counters used in [29]. The feedback inherent in the iterative

CORDIC method presents interesting error propagation behavior not observed in simple

circuits. The iterative design can be viewed as a fairly complex finite state machine,

raising questions about when and where results should be checked for correctness (e.g., at

every iteration or only at the final result?). Though relatively complex, a CORDIC

design is more manageable in terms of size and complexity than extremely complicated

circuits such microprocessors, and can be easily scaled to meet the requirements of a

wide range of applications.

Another important characteristic of the CORDIC algorithm is that it fits the

criteria of Class A given in Chapter II. Step 2 in the flowchart from Figure 2.12 asks

whether the system can occasionally accept lower precision results. The answer is

affirmative for many CORDIC applications that can accept “flexible precision,” such as

signal processing and control systems. CORDIC also meets the criteria of steps 3 and 4

in the flowchart, which ask whether approximate solutions can be formulated and are

more efficient. By changing the wordlength and/or number of iterations in a CORDIC

processor, the precision of the solutions can be adjusted. A less precise processor will

necessarily be smaller and therefore more efficient in terms of area, time and power.

Thus, CORDIC is a good candidate for the RPR fault-tolerant technique.

2. CORDIC Applications
Although the original use of CORDIC was in airborne navigation [91], the

CORDIC technique can calculate numerous functions for a broad range of applications.

It can be used to calculate transcendental functions (sine, cosine, arctangent, exponential,

etc.), coordinate transformations (Cartesian-to-polar, etc.), and other common arithmetic

93

functions (multiplication, division, square root, etc.) [30]. CORDIC processors have

been used for applications as varied as handheld calculators, radar signal processing, and

image processing [90].

CORDIC has been used in many DSP applications, such as discrete Fourier

transforms and matrix solvers [25]. It has also been used to calculate the Discrete Cosine

Transform (DCT), which is widely used for image compression and other signal

processing tasks. Numerous papers describe efficient CORDIC-based DCT techniques

[92], [93].

One particularly intriguing paper investigates low-power image processing using

a CORDIC vector interpolator [65]. The authors achieve over 70% reduction in power

consumption by adjusting the precision of the calculations to match the dynamically

changing scene. This variable precision calculation is enabled by controlling the number

of CORDIC iterations performed – higher precision uses more iterations and more power,

while lower precision requires less power.

CORDIC has proven to be an efficient and powerful computing technique for

VLSI designs and, more recently, FPGA implementations [25], [94]. In fact, CORDIC is

so widely used that it is now available as intellectual property (IP) “cores” from Xilinx

[95] and other vendors. Thus, studying CORDIC designs has considerable practical

utility.

B. MATHEMATICAL FOUNDATION
The CORDIC computational technique is an elegant method for calculating a

surprising number of functions using simple circuit elements. Volder developed this

method to calculate navigation equations in a real-time aircraft computer system [91]. He

named his system the COordinate Rotation DIgital Computer (CORDIC) and first

published the technique in 1959. Its basic formulation is an iterative algorithm based on

simple trigonometric relationships that describe vector rotation in 2-dimensions. It was

later generalized to include 6 possible modes of operation {circular rotation/vectoring,

linear rotation/vectoring, hyperbolic rotation/vectoring} that enable the calculation of

numerous standard and transcendental functions [90]. One of the more commonly used

modes is the circular rotation mode, which is derived in the next section.

94

1. Derivation of Circular Rotation Mode
The basic concept for the circular rotation mode can best be described using

Figure 5.1. A unit length vector originally aligned along the x-axis is rotated by an angle

θ. Since the vector length remains equal to 1 through this rotation, the final x and y

values give the cosine and sine values of the angle θ.

Figure 5.1 Vector Rotation in 2 Dimensions

In the CORDIC algorithm, this rotation process is performed as a series of pre-

defined rotation steps of decreasing magnitude that add up to the total desired rotation

angle. These rotation steps are chosen to be αi=±{45°, 26.6°, 14.0°, 7.1°, …} according

to the formula αi=±atan(2-i), as discussed in the next section. For example, 10° of

rotation can be approximated in four steps as θ = 45 – 26.6 – 14 + 7.1 = 11.5°. Any angle

can be approximated to the desired precision using the appropriate number of steps.

However, if this “true” rotation is followed, computing the x and y values at each

step requires sine and cosine calculations. Therefore Volder devised the concept of a

pseudorotation, in which the rotated vector is extended to meet a line perpendicular to the

original vector. A pseudorotation spans the same angle as a true rotation, but causes the

vector length to increase. Figure 5.2 shows the geometry of these two methods for

rotating the vector (x1,y1) by α.

x0=1, y0=0

y=sin(θ)

x=cos(θ)

θ

95

Figure 5.2 True Rotation (left) versus Pseudorotation (right)

For a vector of length R, the original vector components are given by:

β
β

sin
cos

1

1

Ry
Rx

=
=

 (5.1)

while the rotated vector components in true rotation are given by:

()
() [True]

cossinsin'
sincoscos'

112

112

ααβα
ααβα

yxRy
yxRx

+=+=
−=+=

 (5.2)

and the vector in pseudorotation is given by:

()
()

()

[Pseudo]

tan
tan1'sin

tan
tan1'cos

tan1cos

11

2
222

11

2
222

2
2

α
αβα

α
αβα

αα

xy
yRy

yx
xRx

RRR

+=
+=+=

−=
+=+=

+==

 (5.3)

These equations form the basis for the CORDIC algorithm. At each step, i, the

vector is rotated by a pseudorotation angle αi, as shown in the following equations. The

variable λ tracks the remaining amount of angular rotation.

iii

iiii

iiii

XYY
YXX

αλλ
α
α

−=
+=

−=

+

+

+

1

1

1

tan
tan

 (5.4)

β

α
y’2

y1

x’2 x1

β

α
y2

y1

x2 x1

96

Unlike true vector rotations, the CORDIC process does not preserve the length of

the original vector. Each pseudorotation lengthens the vector by the factor α2tan1+

in Equation 5.3 above. This lengthening is independent of whether the rotation α is

positive or negative. The total vector lengthening is a constant, K, that depends only on

the number of iterations performed. With the standard angular steps of ±atan(2-i)

described in the next section, for 10 or more iterations K is roughly 1.646760. Since the

vector expansion factor can be determined a priori, one can compensate by appropriately

scaling the original vector (X0, Y0).

2. Selection of Pseudorotation Angles

For ease of implementation in a digital system, the values of tan(α) are restricted

to powers of two (20, 2-1, 2-2, …). This simplification allows the multiplications that

appear in Equation 5.4 above to be treated as simple right shifts of the binary numbers.

Therefore, the increments by which λ can change are restricted to the values ±atan(2-i).

i = 0 1 2 3 4 5 6 …

αi (deg) = 45 26.6 14.0 7.1 3.6 1.8 0.9 …

αi (rad) = 0.785 0.464 0.245 0.124 0.062 0.031 0.016 …

Table 5.1 Pseudorotation Angles for Circular CORDIC Modes

Finally, an additional term is needed to determine whether the rotation increment

at each step should be positive (counter-clockwise) or negative (clockwise). The variable

ξi ∈ {1, -1} tracks these rotation directions to ensure the vector approaches the desired

final angle. The fundamental CORDIC equations are therefore:

() ()iiii

i
iii

i
iiii

i
iiii

YX

XYY
YXX

signor sign
2tan

2
2

1
1

1

1

−==
−=

+=

−=

−−
+

−
+

−
+

λξ
ξλλ
ξ

ξ

 (5.5)

97

These are the forms of the equations needed for implementation in a digital

system. The essential hardware elements are 3 registers, 3 add/subtract units, 2 shifters, a

sign detector, and a lookup table. Figure 5.3 shows how these components are arranged

in an iterative implementation. Details such as register reset signals, LUT address lines,

output rounding and other input/output processing are not shown.

Figure 5.3 Iterative CORDIC Hardware Configuration

Depending on which sign formula is used for ξ, different functions can be

calculated. Choosing the first formula (rotation mode) and setting (X0=1/K, Y0=0)

produces cosine and sine functions. After m iterations, the values Xm and Ym represent

approximations of the cosine and sine of the starting angle λ0. With the second formula

(vectoring mode) and λ0=0 the function atan(Y0/X0) is produced.

C. ERROR PROPAGATION IN ITERATIVE AND PIPELINED DESIGNS
Although a CORDIC processor is comprised of simple circuit elements, the

iterative nature of its calculations causes errors to propagate in complicated ways. This

complex behavior can cause single bit errors in the input or internal circuit to cascade

into multiple data bit errors at the output. This cascade of errors can happen in both

iterative and pipelined implementations. Thus, standard error detection and correction

schemes are insufficient for coping with faults in CORDIC designs and other circuits

with similar iterative structures.

X

Y

λ

shift

shift

LUT
∓ξ

±ξ
∓ξ

98

1. Feedback and Error Propagation

An iterative CORDIC circuit has quite obvious feedback paths, since the (X, Y, λ)

register values on one clock cycle are used to calculate the same register values on the

next clock cycle. Depending on when and where a fault occurs, it can corrupt a large

fraction of the output data bits. In addition, the control function is a finite state machine

that makes decisions about when to start/stop the iterations and keeps track of the

iteration number. While some failures in this controller have mild consequences, other

failures can be catastrophic.

By contrast, a pipelined CORDIC design does not contain such feedback

elements. The pipeline is entirely made up of feed-through logic. There is no need to

keep track of iteration counts since the lookup table values can be distributed along the

pipeline and the shifting function can be hardwired. Nonetheless, some faults can still

lead to multiple bit errors at the output. For example, SEU-induced configuration faults

in the early pipeline stages have a greater numerical impact on the result (affecting bits

closer to the MSB) than faults in later pipeline stages (affecting bits closer to the LSB).

Two brief examples demonstrate typical error propagation behavior. Both cases

produce outputs with 8-bit resolution using the two’s complement fixed-point number

scheme from Appendix A (Appendix B contains the MATLAB code that was used for

generating these examples). Eight iterations and an 11-bit internal datapath are needed to

provide accurate 8-bit output values. Appropriate rounding, not shown in this section,

must be applied to the final X and Y values between the internal registers and the output

lines. These examples use the circular rotation mode to produce sine and cosine values of

the input angle of 30° (0.5236 radians). Thus the correct answers should be

866.023)30cos(==°=X and 500.021)30sin(==°=Y .

Table 5.2 shows what happens when an SEU upsets bit #4 of the Y register during

iteration #6 in an iterative design. As expected, the final Y value is significantly

corrupted, whereas the final X value is changed only slightly. However both answers

have 2 bits in error. Note that the angle values are unaffected, as the λ datapath has no

dependence on the X and Y values for this CORDIC mode.

99

 i Fault-free Faulty
0 00100110111 = 0.607 00100110111 = 0.607
1 00100110111 00100110111
2 00111010010 00111010010
3 00110101011 00110101011
4 00111001101 00111001101
5 00111000000 00111000000
6 00110111001 00110111101
7 00110111101 00110111111

X

8 00110111100 = 0.867 00110111111 = 0.873
0 00000000000 = 0.000 00000000000 = 0.000
1 00100110111 00100110111
2 00010011100 00010011100
3 00100010000 00100010000
4 00011011011 00011011011
5 00011110111 00001110111
6 00100000101 00010000101
7 00011111111 00001111111

Y

8 00100000010 = 0.504 00010000010 = 0.254
0 00100001100 = 0.527 00100001100 = 0.527
1 11101111010 11101111010
2 00001100111 00001100111
3 11111101010 11111101010
4 00000101010 00000101010
5 00000001010 00000001010
6 11111111010 11111111010
7 00000000010 00000000010

λ

8 11111111110 = -0.004 11111111110 = -0.004

Table 5.2 Example Error Propagation in Iterative CORDIC

The second scenario involves an SEU causing a configuration fault in the carry

logic for the third stage adder along the λ datapath of a pipelined design. This

hypothetical fault causes an inversion of the carry signal from bit position 6. As seen in

the fourth λ row of Table 5.3, the carry propagation error has a ripple effect on the 5

leftmost bits. Because the X and Y calculations depend on the sign of the angle value,

this fault causes significant data corruption in both the sine and cosine results. The final

X and Y values each contain 3 bit errors. Interestingly, the angle value error is corrected

in subsequent stages and by the fifth stage recovers completely to the fault-free value.

However, this correction of the angle value only occurs in the rotation modes. In the

vectoring modes, an error in the λ register would persist since the iterations are designed

to drive the Y value to zero.

Fault
occurs
here

100

 Stage Fault-free Faulty
0 00100110111 = 0.607 00100110111 = 0.607
1 00100110111 00100110111
2 00111010010 00111010010
3 00110101011 00110101011
4 00111001101 00110001001
5 00111000000 00110011101
6 00110111001 00110010100
7 00110111101 00110011000

X

8 00110111100 = 0.867 00110010110 = 0.793
0 00000000000 = 0.000 00000000000 = 0.000
1 00100110111 00100110111
2 00010011100 00010011100
3 00100010000 00100010000
4 00011011011 00101000101
5 00011110111 00100101101
6 00100000101 00100111001
7 00011111111 00100110011

Y

8 00100000010 = 0.504 00100110110 = 0.605
0 00100001100 = 0.527 00100001100 = 0.527
1 11101111010 11101111010
2 00001100111 00001100111
3 11111101010 00000101010
4 00000101010 11111101010
5 00000001010 00000001010
6 11111111010 11111111010
7 00000000010 00000000010

λ

8 11111111110 = -0.004 11111111110 = -0.004

Table 5.3 Example Error Propagation in Pipelined CORDIC

The significance of these observations is that modular redundancy techniques

such as TMR and RPR are essential for protecting against faults in FPGA

implementations of CORDIC. Error detection and correction (EDAC) codes, such as

Hamming and Reed-Solomon codes, are effective for fixing a small percentage of bit

flips during data transmission or storage, but are incapable of correcting large numbers of

bit errors that can occur due to functional faults [30]. EDAC methods generally operate

by checking input/output data against a “dictionary” of valid codewords, focusing on

faults that affect the data bits themselves instead of faults in the underlying operation of

the circuit. Some coding techniques, such as residue coding, provide tolerance against

functional faults within circuits such as simple adders [96]. However, the properties of

residue codes are only preserved in addition, subtraction and multiplication [97] so

residue coding is not suitable for the division operations inherent in the CORDIC

Fault
occurs
here

101

iterations. Techniques such as TMR and RPR overcome these limitations and are more

effective for protecting complex circuits such as CORDIC.

2. Using TMR and RPR to Correct CORDIC Faults
The effectiveness of TMR and RPR can be demonstrated using the preceding

examples from Table 5.2 and Table 5.3. The TMR approach uses three identical copies

of the processing module, whereas RPR uses one copy of the processing module and two

smaller modules for calculating the upper and lower bounds. Figure 5.4 shows a block

diagram of how RPR would be implemented. In these examples, the input and output

datawidth for the exact module is 8-bits (n=8, h=8), though the internal datapath is 11-

bits wide. For these examples, assume that 5-bit calculations of upper and lower bounds

are sufficient (m=5, k=5).

Figure 5.4 General RPR Configuration

With these assumptions, the behavior of both TMR and RPR designs can be

predicted. Considering only a single fault that affects one of the identical TMR modules

or the exact module in RPR, the voters in both designs are presented with the choices

given in Table 5.4 and Table 5.5 for the two fault scenarios described in the previous

section. Note that the full-precision values from Table 5.2 and Table 5.3 have been

rounded to 8 bits , as mentioned in Section 1.

Exact

Upper bound

Lower bound

Voter

h-k

k

midpoint, etc.

k

h

k

m

n

m

n

102

TMR RPR
X 00111000 X 00111
Y 00100000 Y 00101 Module A

(fault-free) λ 00000000

Module A
“upper”

(fault-free) λ 00000

X 00111000 X 00111000
Y 00010000 Y 00010000 Module B

(faulty) λ 00000000

Module B
“exact”
(faulty) λ 00000000

X 00111000 X 00110
Y 00100000 Y 00100 Module C

(fault-free) λ 00000000

Module C
“lower”

(fault-free) λ 11111

X 00111000 X 00111000
Y 00100000 Y 00100--- Voter
λ 00000000

Voter
λ 00000000

Table 5.4 Example Response of Iterative TMR and RPR Designs

As expected, in both scenarios the TMR version produces the correct answer with

full precision since it has access to two fault-free answers. RPR is more complicated

because its fault response depends upon how far the exact solution deviates from the

correct value. In the iterative case above, the rounded value of the X result is the same

for the faulty and fault-free modules, thus neither voter sees any conflict. However, the Y

result error is detected by the voters. The RPR voter recognizes that the faulty Y value is

outside the range of the upper/lower bounds and must make a decision about what value

to report. As shown in the table, the voter reports 00100---, with “-“ indicating that these

digits may differ depending on the particular implementation. For example, a logical

choice might be to provide a “midpoint” value like that suggested in Figure 5.4. Thus

00100--- would become 00100100.

In the pipelined case below, the data errors exist in the least significant bits of the

X and Y values. Because this particular circuit fault yields only small numerical errors,

the X, Y, and λ values from the exact module all fall within the bounds of RPR modules

A and C. Therefore the voter doesn’t detect any problem and passes along the results

from module B. As indicated in the table, this permits three erroneous bits to propagate.

However, all of the results are within the tolerance range of a 5-bit RPR design (±2-(5-2)=

±0.125). This possibility of imprecise results is the trade-off that permits savings in area

and power when implementing RPR fault tolerance.

103

TMR RPR
X 00111000 X 00111
Y 00100000 Y 00101 Module A

(fault-free) λ 00000000

Module A
“upper”

(fault-free) λ 00000

X 00110011 X 00110011
Y 00100111 Y 00100111 Module B

(faulty) λ 00000000

Module B
“exact”
(faulty) λ 00000000

X 00111000 X 00110
Y 00100000 Y 00100 Module C

(fault-free) λ 00000000

Module C
“lower”

(fault-free) λ 11111

X 00111000 X 00110011
Y 00100000 Y 00100111 Voter
λ 00000000

Voter
λ 00000000

Table 5.5 Example Response of Pipelined TMR and RPR Designs

It is important to point out that neither redundancy technique is infallible. TMR

and RPR are vulnerable to faults that affect any single point of failure, such as non-

replicated voter components and SEFI-type vulnerabilities unique to FPGAs. In addition,

they are both vulnerable to multiple faults that simultaneously affect more than one

module. However, when using FPGA configuration scrubbing, the likelihood of

experiencing SEU-induced faults in multiple modules at the same time is extremely rare.

Chapters VI and VII demonstrate the effectiveness of these two redundancy

approaches for various CORDIC implementations. Of particular interest are the relative

effectiveness and efficiency of these two techniques. By quantifying the SEU

susceptibility and area/power usage of RPR and TMR, one can make informed decisions

about which method is most appropriate for a particular real-world problem.

104

THIS PAGE INTENTIONALLY LEFT BLANK

105

VI. SIMULATION ENVIRONMENT AND RESULTS

A. OVERVIEW
In order to demonstrate the effectiveness and efficiency of the RPR fault tolerance

approach, simulations were conducted to determine the SEU sensitivity and power

consumption of several CORDIC designs implemented on FPGAs. SEU simulations

were performed using hardware and software tools developed at NPS for the CFTP

program, and enhanced to support this research. The completion of this SEU simulation

system is a major contribution of this work, as it allows comprehensive ground-based

testing for emulating and predicting performance of the CFTP experiments in their

operational space environment. The SEU simulator was validated using radiation test

data from experiments conducted at UC Davis’ Crocker Nuclear Lab (see Chapter VII).

Power estimates for the CORDIC designs were made using commercial software tools,

following the methodology used at BYU [9]. Predictions of power consumption were

made by integrating high-fidelity timing simulations of the circuits with manufacturer

data of FPGA circuit parameters.

The data presented in this chapter supports the assumptions made in previous

chapters regarding the benefits of an RPR fault-tolerant design. Compared to the TMR

designs tested in this research, the RPR designs show comparable SEU tolerance but

require significantly less power. Thus for many applications, especially those in which

power is a significant constraint, the RPR architecture is superior to the typical TMR

approach.

B. SEU SIMULATIONS

1. SEU Simulation Environment
As part of the CFTP research program, a fault injection system was built at NPS

to simulate the effects of SEUs on FPGA circuits [98]. The initial fault injection system

consisted of manual command-line and graphical user interface methods of forcing

single-bit upsets into an operational FPGA configuration bitstream. The command-line

method was used to simulate upsets to specific bits and/or regions on the device. The

106

graphical interface injected faults in a more random manner, but provided visual

confirmation of whether or not those faults appeared in regions of the FPGA occupied by

the functional circuit. The effects of the simulated SEUs were determined using

automatic error detection circuits programmed on the FPGAs, by visual monitoring of the

output data stream, and through post-processing of the data. These manual techniques

were used in preparation for radiation testing and in analysis of the radiation test results.

As part of this research, the manual methods were later augmented with an

automatic fault injection system that dramatically improved the speed and capability of

the SEU simulator. The CFTP hardware configuration is well-suited for this task because

it includes two Xilinx Virtex FPGAs and an on-board Flash memory device for holding

configuration bitstream data. Figure 6.1 shows the major components in the SEU

simulator configuration. The first FPGA serves as the controlling device and the second

FPGA is the experiment device.

Figure 6.1 SEU Simulator Configuration with CFTP Hardware

The automated SEU simulator tests the SEU sensitivity of the circuit design

loaded onto the experiment FPGA. The control FPGA reads fault-free configuration data

from the Flash memory, programs the experiment FPGA with artificially corrupted

bitstream data, and reports the effect of each simulated SEU on the experiment FPGA

output data. Since some configuration faults only manifest themselves as data errors for

certain input values, it is important for the X2 circuit to process input vectors that

exercise as many circuit paths as possible. The normal simulator settings allow the X2

circuit to run for approximately 1 msec after each bit is toggled to capture these data-

dependent sensitivities. The CFTP board has a 50 MHz clock, but throughput is lower.

For example, the 32-bit iterative CORDIC circuits described below divide the clock

down to 6.25 MHz and require 37 cycles to produce each result. Thus, these circuits

CFTP Board

X1
Control
FPGA

X2
Experiment

FPGA
ARM

Processor
LINUX

Workstation

107

process 168 unique inputs in a 1 msec period. In addition, pseudo-random number

generators are used to produce input vectors for the X2 circuit to maximize the chance of

discovering error-producing configuration faults. Data is collected by the ARM

processor (also part of the CFTP flight hardware) and sent to the LINUX workstation for

storage and analysis.

Automation is essential for enabling the comprehensive measurement of SEU

sensitivity for complex FPGA circuits in which millions of configuration bits must be

individually tested. Even with the automation of the fault injection process,

comprehensive SEU simulations are a time-consuming endeavor. In normal operation,

the SEU simulator takes over one hour to exhaustively test all 3.3 million configuration

bits on the Virtex XQVR600 device. Designs with very small sensitivities have few

errors to report and the total process finishes in slightly over 1 hour. Designs with greater

SEU sensitivity take longer to run because the error reports slow the process. For

example, a design with about 40,000 sensitive bits requires nearly 1.75 hours to

complete.

Although the manual fault injection methods are not practical for comprehensive

SEU sensitivity studies, they were invaluable in developing and verifying the automated

fault injection process. The initial fault injection methods were used for rapid

confirmation of radiation results. Data from these manual simulations and radiation tests

were compared with results from the automated simulator, thus demonstrating the

validity of the automatic method of simulating radiation-induced SEUs. During radiation

testing the proton flux was controlled to ensure that the exact bits causing data errors

could be easily isolated. These configuration bits were then manipulated in the simulator

to verify that they were responsible for the data errors observed in the radiation

environment. Chapter VII discusses the details of the radiation testing and presents

results from the verification effort. Once validated, the SEU simulator can be used

confidently to examine the sensitivity of FPGA circuits without expensive and time-

consuming testing in a radiation facility. The following sections demonstrate the

effectiveness of the RPR method through simulations of various CORDIC test circuits.

108

2. Test Circuits

Several CORDIC circuits were tested to draw fair and accurate conclusions about

the comparative reliability of TMR and RPR approaches. The basic CORDIC design is

detailed in Appendix A. However, some important details differ between the various test

designs shown below. The first two test circuits, labeled “Davis TMR” and “Davis

RPR,” correspond to the exact circuits used during radiation testing. Several

improvements implemented after the UC Davis test runs in Nov 2005 included: 1)

replicating the input vector counters and assigning each TMR or RPR module its own

counter, 2) using LFSRs for input number generators, and 3) simplifying the TMR voter

logic to operate as a bit-wise voter rather than vector-wise. Changing the input vector

counters from simple binary counters to LFSR pseudo-random number generators

provided better coverage of the input vector space. This is because practical issues (in

particular, the time required to test a circuit) limit the number of inputs that can run

through the circuit for each simulated SEU. The LFSR approach offers a better sampling

of the range of possible input values.

Finally, it is important to note that the TMR designs built for these tests differ

somewhat from the TMR style suggested by Xilinx [68]. Instead they follow more

closely with the TMR designs tested in [85]. Whereas Xilinx’s approach involves

triplication of logic functions as well as all clock signals and input/output pins, the TMR

circuits tested here do not replicate the clock and I/O signals. Rather, a single set of

inputs are shared among all modules and all data results are voted within the FPGA

before being output. The following sections describe the unique features of each test

circuit. Different and more extensive TMR, RPR and other techniques can easily be

inserted in the simulation testbed developed here to support future research.

a. “Davis TMR” Iterative CORDIC
Figure 6.2 shows the layout for the TMR circuit used during radiation

testing at UC Davis (note that the cloud shapes reflect the fact that the component

placement was not specified as a design constraint and instead the Xilinx tools were

allowed to automatically place and route the circuit). It consists of three copies of an

iterative CORDIC processor computing the sine and cosine functions, as detailed in

109

Appendix A. Inputs and outputs are 32 bits wide, while internal computations are

performed with 39-bit precision. A single binary counter is included to generate 32-bit

input angle values for all three modules. Although three different results are computed in

each module (sine, cosine, and residual angle), due to I/O pin limitations only the sine

value is compared and output from the FPGA. The only input to the FPGA is a reset

signal that is used to synchronize the X1 and X2 devices by initializing all registers,

including the angle input counter. Outputs from the device consist of the voted 32-bit

sine value and an error flag indicating whether the TMR voter detected any mismatch

among the three modules.

Figure 6.2 Layout for “Davis TMR” Circuit

b. “Davis RPR” Iterative CORDIC
The RPR circuit used during radiation testing is sketched in Figure 6.3. It

consists of a single copy of the 32-bit iterative CORDIC processor used in the “Davis

TMR” design, as well as 8-bit upper and lower bounds calculations that are implemented

as simple look-up tables. These upper/lower bounds provide protection against faults that

cause the full-precision module to produce grossly inaccurate results, as is the intent with

the RPR approach. A single binary counter feeds input vectors to all three modules and a

reset signal synchronizes the FPGAs. Like the TMR circuit, only the sine results are

compared and output. Also, an error flag tells when the voter detects a result from the

precise module that falls outside the range of the upper/lower bounds.

RESET

C B
A

Cntr

VoterSINE

110

Figure 6.3 Layout for “Davis RPR” Circuit

c. “Unprotected” Iterative CORDIC
In addition to the TMR and RPR designs, circuits without any fault

tolerant features were tested. The basic configuration for these circuits is shown in

Figure 6.4. The first of these circuits was a 32-bit iterative CORDIC processor based on

the VHDL design given in Appendix A. The input and output behavior of this circuit is

identical to the Davis circuits in a fault-free situation. An additional unprotected circuit

with only 16-bits of computational precision was tested to understand the correlation

between circuit size and SEU sensitivity. These circuits have no way of mitigating SEUs

that corrupt their configuration bits. Testing an unprotected circuit is useful for

determining a baseline failure rate, which can then be compared with fault tolerant design

options. The benefit of the fault tolerant approaches can be assessed relative to the

reliability of the unprotected design.

RESET

B
low

A

Cntr

VoterSINE

C
high

111

Figure 6.4 Layout for “Unprotected” Circuits

d. “Improved TMR” Iterative CORDIC
Following the radiation testing at UC Davis, some deficiencies were

identified in the overall structure of the TMR and RPR designs. Therefore several

improvements were made to the original designs. As explained in Appendix A, while the

original “Davis” circuits were generated mostly with schematic design tools, subsequent

circuits were created using VHDL. This permitted more rapid adjustment of numerical

precision, voter design, and other parameters. TMR versions of the iterative CORDIC

circuits were tested with various degrees of precision. As shown in Figure 6.5, the

improved TMR circuits include separate input number generators for each CORDIC

module in order to eliminate the input counter as a single point of failure. In addition,

LFSRs are used instead of simple binary counters to improve the randomness of the

circuit input values. Finally, the TMR voter was changed so that it operates on each

output bit individually instead of the entire output data word. Voting each bit separately

is more common in TMR designs. Also note that the rectangular shapes reflect the

explicit circuit placement constraints that were used to ensure that faults in a certain

region of the device did not affect more than one module.

A

Cntr

SINE

RESET

112

Figure 6.5 Layout for “Improved TMR” Circuits

e. “Improved RPR” Iterative CORDIC
Following the same rationale described for the “improved TMR” designs,

some improvements were made to the original RPR designs tested at UC Davis. The

“improved RPR” designs were created in VHDL, include replicated LFSR input number

generators, and have enhanced voter layout. These circuits maintain the basic RPR

architecture of computing a full precision solution and lower precision upper and lower

bounds, as shown in Figure 6.6. One key enhancement to the voter is a checker that

detects errors in the numerical difference between the lower and upper bounds. This

checker ensures that the upper bound is not less than or equal to the lower bound. In

addition, the checker confirms that the difference between the upper and lower bounds is

less than or equal to the maximum allowed. Based on the rounding methods used here,

this difference should be no more than one digit in the least significant bit in the bounds

calculations.

C

Voter

B

A

Cntr Cntr Cntr

SINE

RESET

113

Figure 6.6 Layout for “Improved RPR” Circuits

3. Results

a. Data

The fundamental product of the SEU simulator is the number of

configuration bits in a circuit design that cause errors in output data. These bits are

referred to as “sensitive” [42]. A circuit’s overall sensitivity is expressed either as a total

count of sensitive bits or as a fraction of sensitive configuration bits. Such data is

directly related to the circuit’s dynamic SEU cross section, a term used elsewhere in the

literature [85] (the word “dynamic” indicates that a functional circuit must be actively

operating to determine this sensitivity). Multiplying an FPGA’s static cross section by a

circuit’s sensitivity fraction yields the dynamic cross section of a circuit. This value can

then be multiplied by the predicted radiation flux in space to arrive at an expected failure

rate in the operational environment.

Table 6.1 summarizes the results from SEU simulations on the CORDIC

circuits described in Section 2 above. As explained in Section 1, the experiment and

control FPGAs were synchronized so that the data from the X2 FPGA could be verified

against the fault-free computation being performed simultaneously on X1. The data in

Table 6.1 gives the number and fraction of configuration-bit SEUs that produce at least

one erroneous data value during the simulator’s 1 msec error detection interval. These

are data errors that could not be corrected by mitigation methods on X2. Thus low counts

are desirable.

C
high

Voter

B
low

A

Cntr Cntr Cntr

SINE

RESET

114

CORDIC Design Name

(Virtex XQVR600cb228-4)
(3,378,600 config bits)

Area
(Slices)

Sensitive

Bits

Fraction
Sensitive

Bits
Davis TMR Iterative 1326 30,604 0.91%

Davis RPR Iterative 540 31,837

(350)*

0.94%

(0.01%)*

Unprotected 32-bit Iterative 843 66,190 1.96%

Unprotected 16-bit Iterative 238 21,065 0.62%

Improved 32-bit TMR Iterative 2541 30,003 0.89%

Improved 16-bit TMR Iterative 667 11,616 0.34%

Improved 32-bit RPR Iterative 933 65,699

(22,691)*

1.94%

(0.67%)*

Improved 16-bit RPR Iterative 309 22,922

(15,291)*

0.68%

(0.45%)*

Table 6.1 SEU Simulator Results for Uncorrected Errors

()* Errors in 8 Upper Bits Only

Although not shown in Table 6.1, the data collected during SEU

simulations also includes the total number of erroneous outputs accumulated during the 1

msec interval that each SEU is allowed to persist. Some bit upsets lead to data errors on

every calculation, while other upsets only corrupt the output data for certain inputs.

During the 1 msec error detection interval, the 32-bit CORDIC circuits process 168

unique input values. Thus upsets to the most critical bits cause a maximum error count of

168, whereas less troublesome bit upsets cause a smaller number of errors. These error

counts can be interpreted as the probability of circuit failure when an SEU affects a

particular bit, as described in [99]. The histogram in Figure 6.7 shows an example of the

distribution of sensitive configuration bits in terms of this failure probability, using data

from the “Davis TMR” circuit. Simulation results for the various test circuits show that

the vast majority of the error-producing SEUs affect the output for most or all of the input

values. Similar results were reported in [99]. Thus the overall circuit MTBE is

essentially equal to the mean time between sensitive bit upsets.

115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
x 104 Davis TMR Circuit - 30,604 Sensitive Bits Total

Probability of Data Error Due to SEU

N
um

be
r o

f S
en

si
tiv

e
C

on
fig

ur
at

io
n

B
its

Figure 6.7 Histogram of Error Counts for Sensitive Bits in “Davis TMR” Circuit

The X1 control circuitry can perform more sophisticated error detection

functions than simple correct vs. incorrect checks. In light of the fact that systems

utilizing results from FPGA circuits can often tolerate a slight amount of imprecision, it

is useful to investigate how often a circuit suffering SEUs is likely to provide grossly

inaccurate data versus only slightly corrupted results. The RPR architecture is designed

to ensure that output data is close to a correct result. Additional simulations were run

with the RPR circuits to measure their probability of failing this goal. The data in Table

6.1 lists two values for the sensitive bit measurements for each RPR circuit. The first

entries are based on a strict comparison for exact equality between X1 and X2 results.

The second entries (listed in parentheses) are based on an error threshold that is only

triggered when the X2 result differs from the X1 result in the 8 MSB positions. Since

RPR is designed to ensure approximate equality, a true design failure only occurs when

the output exceeds the upper/lower bounds. As seen in the table, this second failure

criteria gives much lower sensitivity values. Although the “Davis RPR” data shows a

tremendous decrease in sensitivity according to this second criteria (350 bits vs. 31,837

bits), it is important to realize that this data is skewed because it uses simple binary

116

counters for generating input values. The “Davis” circuits’ counters are reset to all 0’s

after each artificial SEU injection and never count high enough to affect the 8 MSBs in

the 1 msec before the next SEU is injected. Thus, many possible errors are not detected

for the “Davis” circuit by using the approximate equality criteria. The simulations with

the improved RPR circuits provide a fairer evaluation because they included LFSR

random number generators.

It is also important to assess a fault tolerant design’s ability to mask data

errors. TMR and RPR are capable of hiding many internal data errors since the

redundant module outputs are voted prior to being sent to output pins. Several of the test

circuits provided an output flag indicating when the voter detected mismatches among the

redundant modules. The data in Table 6.2 displays how many SEUs caused errors that

were properly masked within X2, based on this output flag.

CORDIC Design Name

(Virtex XQVR600cb228-4)
(3,378,600 config bits)

Area
(Slices)

Masked
SEU

Errors

Fraction
Masked

Bits
Davis TMR Iterative 1326 90,821 2.69%

Davis RPR Iterative 540 29,376 0.87%

Improved 32-bit TMR Iterative 2541 193,409 5.72%

Improved 16-bit TMR Iterative 667 63,923 1.89%

Improved 32-bit RPR Iterative 933 32,729 0.97%

Improved 16-bit RPR Iterative 309 15,154 0.45%

Table 6.2 SEU Simulator Results for Masked Errors

Note that the TMR circuits have much larger values in Table 6.2 than in

Table 6.1, whereas the RPR circuits have roughly equal numbers. This shows that the

more comprehensive redundancy structure of TMR is able to detect and correct a greater

percentage of SEUs. This is not surprising, however, since the RPR design is essentially

blind to errors causing small numerical inaccuracies. In the RPR circuits tested here, 8-

bit precision in the upper/lower bounds means many data errors are below the detection

threshold.

The SEU simulator provides detailed data about the identity, timing and

effect of each sensitive bit detected. However, the sheer scale of assessing the behavior

117

of over 3 million configuration bits makes the large datastreams produced by the

simulator somewhat prone to error. Graphical displays of the data can be of great value

for making qualitative assessments of each SEU simulation run. The results from an

entire simulation can be displayed in a single visual image to check general behavior, or

small segments of the data can be viewed in close-up plots to analyze finer details. Such

graphical methods are commonly used in the field [85], [1]. A mapping of design

sensitivity can be created by translating the bitstream addresses of each sensitive

configuration bit to its physical device location. The left image in Figure 6.8 shows the

sensitivity map created by plotting the locations of all 30,604 sensitive bits from the

“Davis TMR” circuit.

The right image in Figure 6.8 shows the layout of the “Davis TMR”

circuit, as displayed in Xilinx’s “FPGA Editor” tool. This tool permits viewing and

editing of a fully placed-and-routed circuit. FPGA resources that are actively utilized by

the circuit (i.e., CLBs, muxes, clock buffers, I/O pins, etc.) are colored in the FPGA

Editor display. Only SEUs affecting the active circuit elements should cause data errors.

500 1000 1500 2000 2500 3000 3500

100

200

300

400

500

600

700

800

900

Figure 6.8 Detected Sensitive Bit Locations (left) vs. Circuit Layout (right) for “Davis TMR”

Note that the sensitive bits on the left are very well correlated with the actual

circuit layout on the right. This provides assurance that the SEU simulator is properly

injecting faults and detecting errors. For each simulation run, the SEU sensitivity map

was compared to the circuit layout as a quality assurance check of the simulator data.

118

b. Discussion

As expected, the TMR circuits generally showed better SEU tolerance

than the RPR circuits. This is not surprising, since the RPR design assumes that errors

with small numerical consequence can be tolerated by downstream systems, and are

therefore allowed to propagate. RPR’s strength is in preventing errors in the most

significant bits of the output data. As shown in Table 6.1, RPR demonstrated lower

probability of suffering errors in the MSBs than across the entire output data vector. This

supports the intuitive expectations from Chapter II. Comparing the number of errors in

any bit position of the output data for the “improved” 32-bit and 16-bit CORDIC circuits,

RPR appears to be roughly twice as sensitive as TMR (66,000 vs. 30,000 and 23,000 vs.

12,000). However, errors in the most significant 8 bits of the RPR output had similar

frequency to errors anywhere in the TMR output. Using this evaluation criteria, RPR was

better for the 32-bit version but worse for 16-bit version.. This difference is because the

8-bit redundant modules for RPR occupied a relatively larger fraction of the total circuit

in the 16-bit case and therefore suffered a larger proportion of the total circuit-affecting

SEUs.

The data also confirms that TMR is effective in detecting and correcting

large numbers of SEUs. The TMR circuits show much higher counts of corrected errors

(Table 6.2) than uncorrected errors (Table 6.1). For example, the improved 32-bit TMR

design fixed more than six times as many errors as it was unable to fix. The basic TMR

design includes three identical copies of an unprotected circuit. Therefore, one would

expect the TMR voter to detect roughly triple the number of errors as appear in a single

unprotected 32-bit circuit Indeed, the TMR circuit corrected 193,409 and the unprotected

version produced 66,190 errors (a ratio of 2.9).

Although the general trends in the data follow many of the predictions

made in Chapter II concerning the relative performance of TMR and RPR, it is quite

surprising to see such high residual SEU sensitivity with both techniques in relation to the

unprotected circuits. The rather high numbers listed in Table 6.1 prompted more careful

examination of the SEU sensitivity maps. As expected, the voter and output logic regions

of the circuits contributed to the SEU sensitivity of the designs. However, there were

also many sensitive bits in the computation modules, which should be protected by the

119

redundant architecture. The quantity and location of these unexpected sensitive bits were

reconfirmed through extensive retrials with full- and partial-device simulations, all of

which supported the original data.

Several factors may contribute to the high sensitivity values for these

circuits. First, as pointed out in Section 2, the circuit designs did not follow all of

Xilinx’s recommendations for implementing modular redundancy [68]. For example,

Xilinx documentation describes using tri-state buffers instead of LUT logic for

performing majority voting operations. The circuits tested here used a behavioral VHDL

circuit description and allowed the vendor synthesis tools to optimize the design.

Incorporating Xilinx’s recommendations would require working more towards a

structural VHDL design process to achieve maximum fault tolerance. A real operational

system would clearly benefit from such an effort.

Another cause of the high sensitivity values may be the design synthesis

software itself. There were several cases in which inconsistent or incorrect circuits were

produced using Xilinx ISE 6.x series software. In some cases VHDL source code was

tested in the ModelSim software to demonstrate proper behavior. However, after

compiling and running the exact same source code on the actual FPGA, the results did

not match the ModelSim results. Other problems were encountered trying to compile

code using ISE 6.2 versus ISE 6.3. For example, version 6.2 for LINUX correctly

synthesized VHDL code with a nested series of multiply and add operations whereas

version 6.3 for Windows could not synthesize the same code. In another example, the

VHDL code for a pipelined version of the CORDIC compiled correctly in 6.3 but not in

6.2. In light of these problems, and similar anecdotes from colleagues at other

institutions, the CFTP group at NPS is planning to transition to a newer generation of the

ISE software. Following this transition, it would be worthwhile to repeat some of these

experiments to see if the high sensitivities persist.

Finally, some of these symptoms may be due to effects from “hidden half-

latches” as described in [7]. These half-latches are used throughout the Virtex FPGAs for

storing constant values of 1’s and 0’s as sources for muxes and other elements [43].

These memory elements are called “hidden” because their state is not reported through

configuration readback and is set only upon initial device configuration (i.e., cannot be

120

fixed through partial reconfiguration). In addition to radiation-induced upsets of these

half-latches, Graham explains how they can also be corrupted through SEU simulation

[7]. Mitigation methods for half-latch issues exist, but were not used on the circuits

tested in this research. Future work could involve testing these circuits after employing a

half-latch removal method.

Further investigation into these unexpectedly high residual SEU

sensitivities is an important area for follow-on research. More extensive radiation testing

would be valuable for confirming these simulator results. It would also be useful to

repeat the SEU simulations with TMR and RPR implementations that follow more

closely the techniques proposed in Xilinx’s application note on TMR methods [68]. For

example, an RPR version of the 16-bit processor (with a 16-bit word for the full precision

module and two 8-bit words for the approximate modules) could be built to fit within the

existing CFTP configuration such that the results from all three modules could be output

and voted off-chip. This would conform to Xilinx’s recommendation of triplicating all

input and output signals. However the CFTP system includes only 43 I/O pins

connecting the X1 and X2 FPGAs, so full I/O replication is possible only for rather small

data words.

While some of the results from these SEU simulations are not fully

understood, the data do generally follow the predictions. An important contribution of

this work is that a flexible and powerful SEU simulator is now available for testing

various fault tolerant techniques. In particular, because the simulator is virtually identical

to the CFTP flight hardware, it offers excellent reliability predictions for circuit designs

destined for use during the CFTP space mission. The simulator can be used to compare

the absolute and relative reliability of techniques such as TMR, RPR, selective

redundancy, proprietary methods, and other concepts arising from the CFTP research

program.

C. POWER SIMULATIONS
A primary advantage of an RPR approach over TMR is its reduced power

consumption. To quantify this benefit, power estimates were made for the circuits tested

121

in Section B. Coupled with the SEU sensitivity data, these power estimates provide

important information for comparing the effectiveness and efficiency of fault tolerant

FPGA designs.

Power consumption can be estimated using detailed circuit models before a

particular design is implemented. These power estimates require complicated models

and, unfortunately, have limited accuracy due to uncertainties of various parameters [10].

Although the absolute accuracy of such power models is not perfect, they do offer

valuable information about the relative power estimates for different circuits.

Alternatively, the power consumption of a design can be assessed after implementation

onto the FPGA by using high-fidelity power measurement equipment. The contributions

from both static and dynamic power terms can be determined by measuring power

consumption with and without clocking of the circuit. Since static power is independent

of signal transitions, it is equal to the non-clocked power measurement. Dynamic power

increases linearly with clock frequency. Therefore, a total power estimate is only valid

for a specified clock frequency or when expressed as a function of clock frequency.

Unfortunately, the existing power supply configuration on the CFTP hardware makes

accurate power measurements impractical. A 28 V source supplies power to the entire

CFTP package (CFTP board, ARM processor board and power conditioning board). This

arrangement makes it very difficult to accurately isolate and measure the anticipated

small (~10 mW) fluctuations on the X2 experiment FPGA. Therefore this research used

computer modeling and simulations to estimate power.

1. Power Simulation Environment
Following the methodologies described by Rollins [9] and Tiwari [80], power

simulations were performed using ModelTech’s ModelSim software and Xilinx’s

XPower tool. Rollins found that ModelSim provided precise timing information for all

signals on the chip and accurately captured the effects of signal transients. The accuracy

of this process was verified by Rollins by precisely measuring power consumption on an

actual hardware setup with Xilinx Virtex FPGAs. Though the CFTP hardware

configuration was not amenable to direct power measurements, the power simulation

software used by Rollins was available. Using a variety of circuits, Rollins demonstrated

122

that the simulation technique is fairly accurate. Rollins’ largest discrepancy between

actual and simulated power consumption was on the order of 50%, though most of the

results agreed more closely. Though such a large difference may be a cause for concern

when seeking high precision estimates, it is less significant when comparing circuits that

differ by 200% or more. It was expected that power consumption of the RPR and TMR

designs would differ by much more than 50%. Therefore, it was determined that the

uncertainties in the models would be relatively insignificant and power simulations

would provide sufficient accuracy for this research. Nonetheless, an important topic for

further investigation is the verification of these simulation results with actual power

measurements on the CFTP hardware. Such work would require modifications to the

CFTP circuit board(s) and/or power supply setup.

Several conditions are required to make accurate power estimates. These include

1) a fully defined circuit description, 2) realistic signal toggle rates for each node, and 3)

precise capacitance values for all signal lines. The first condition means that the circuit

under investigation must be completely mapped and placed-and-routed for the particular

FPGA device being used. Circuits described in schematic or high-level languages such

as VHDL must be compiled into FPGA-specific formats completely describing the

locations and interconnections between design elements. The second condition indicates

that a probabilistic or simulation-based estimate is needed to provide activity rates used

in computing the dynamic power component. The third condition is also critical in

computing dynamic power. While static power is a constant value for a particular FPGA

device (see Chapter III), the second and third conditions allow for accurate determination

of dynamic power consumption.

Figure 6.9 shows the interaction of the various software tools used in the power

simulation process. Typically, the design is expressed as a set of VHDL source code

compiled through a commercial FPGA synthesis package. The most commonly used

synthesis software includes Xilinx’s ISE suite and Synplicity’s Synplify products.

Several more steps are required to create the final circuit design that can be loaded onto

the target FPGA. The mapping and place-and-route steps produce a Native Circuit

Description file (*.ncd) that can be viewed and/or edited in the FPGA Editor tool.

Processing this file through BitGen creates a Bitstream file (*.bit) that can be loaded onto

123

the device. The NCD file can also be processed through a Xilinx utility program called

“NetGen” that outputs a “flattened” VHDL version of the circuit and a System Data File

(*.sdf) containing the timing information needed for high-fidelity circuit simulations.

Figure 6.9 Power Simulation Process Flowchart

ModelSim is then used to simulate the entire circuit at high time resolution. By

combining the information in the VHDL and SDF files, ModelSim predicts the sequence

of signal transitions at every node in the design. The accuracy of the simulation is

controlled through a selectable time resolution setting. In general, shorter timescales

provide more accurate results, but create large output files. A timescale of 10 psec was

chosen for the CORDIC simulations to ensure the proper simulation of glitching events.

The output from the ModelSim simulation is a Value Change Dump file (*.vcd)

characterizing the frequency at which each signal node toggles.

Finally, XPower combines the VCD and NCD files to calculate the total power

consumption for the design. XPower is essentially a proprietary database of capacitance

values for each FPGA element. Using the formulas for dynamic power presented in

Chapter III, XPower uses this database and the signal transition data from ModelSim to

output several power consumption reports. For this work, the average power

consumption was the most appropriate metric for comparing different circuits.

The most important variables in the ModelSim runs were the frequency of the

input clock, the length of the simulation run and the timesteps requested of the simulator.

To match the CFTP hardware configuration, the data in Table 6.3-Table 6.4 was

generated with a 50 MHz input clock. Each run spanned 100 microsec of simulation

Synthesis
X2 VHDL

Source Code

*.bit
(bitstream)

*.ncd

Mapping &
Place-and-Route NetGen

ModelSim

BitGen

*.vhd
*.sdf

XPower
Power

Estimate
*.vcd

124

time. This yielded results relatively quickly, prevented file sizes from growing too large,

and ensured that the random number generator went through enough unique values to

provide good statistical coverage. To investigate the possible dependence on time

resolution, the unprotected 32-bit iterative circuit was tested with several different

timestep settings. As shown in Table 6.3, power estimates increased only slightly as the

time resolution was reduced below 100 psec. Thus a 10 psec setting was used for the

remaining runs.

Timestep Increment (psec) 1 10 100 1000
Total Power Estimate (mW) 184 184 182 172

Table 6.3 Power Estimates for Unprotected 32-bit Iterative CORDIC Circuit

2. Test Circuits
The same circuits used for SEU simulations were run through the power

simulation process described above. First, the two “Davis” circuits used for radiation

testing were evaluated. Those 32-bit CORDIC circuits used simple binary counters and

had the most primitive voter designs of the fault-tolerant circuits tested. Next, several 32-

bit CORDIC variants were tested, including an unprotected design, a TMR design and an

RPR design. Data from these circuits were intended to show the relative power usage of

TMR and RPR solutions. Likewise, three different implementations of a 16-bit CORDIC

circuit were tested. In addition to allowing comparison of TMR and RPR, the 16-bit

circuits also provide insight into the relationship between circuit size, complexity and

power. As described in Section B, the circuits built after the UC Davis radiation testing

had various improvements, most notably the pseudo-random number generators (LFSRs)

that create more realistic signal toggle behavior than the simple counters.

In addition, power usage was evaluated for two pipelined CORDIC circuits that

were not tested in the SEU simulator. These circuits were tested to support assumptions

made in earlier chapters about the potential power savings of a pipelined architecture.

Following the procedures described in the previous section, additional circuits could

easily be analyzed for power consumption to determine the most efficient designs for

achieving fault tolerant FPGA solutions.

125

3. Results
Table 6.4 presents the results gathered from the power simulations. The rightmost

columns in the table give the dynamic and total power consumption estimated from the

XPower tool. The output from XPower gives separate estimates for both static and

dynamic power. As explained in Chapter III, static power is a fixed quantity for a given

FPGA device, regardless of the circuit implemented on the chip. For the XQVR600

device, XPower reports static power of 32.16 mW. Therefore, the difference between the

two right columns is simply this constant static power component. Static power

accounted for between 1% and 30% of the total power consumption for the circuits

tested.

Dynamic power, on the other hand, depends on the circuit design loaded on the

FPGA and the input values to that circuit. All of the CORDIC designs were self-

contained. The only inputs were a clock and single reset line. This made running

simulations in ModelSim easier, as only a small sequence of test stimulus code was

needed.

CORDIC Design Name

(Virtex XQVR600cb228-4)
Area

(Slices)
Dynamic

Power
(mW)

Total
Power
(mW)

Davis TMR Iterative 1326 453 485

Davis RPR Iterative 540 142 174

Improved 32-bit TMR Iterative 2541 477 510

Improved 32-bit RPR Iterative 933 172 204

Unprotected 32-bit Iterative 843 152 184

Improved 16-bit TMR Iterative 667 147 179

Improved 16-bit RPR Iterative 309 77 109

Unprotected 16-bit Iterative 238 73 105

Unprotected 32-bit Pipeline 2058 2137 2169

Unprotected 16-bit Pipeline 519 438 470

Table 6.4 Power Estimates from XPower

As expected, all of the TMR designs use significantly more power than the RPR

and unprotected versions of each circuit, supporting the primary motivation for pursuing

126

the RPR concept as a means of conserving power. Focusing on the dynamic power data,

the 32-bit TMR circuits used 2.8-3.2 times as much power as RPR, while the ratio

between the TMR and RPR 16-bit circuits was 1.9. In fact, the RPR circuits used only

marginally more power than the unprotected CORDIC designs, with a power overhead of

between 5% and 13%. The small 8-bit lookup tables used for the upper/lower bounds

calculations occupy only a small portion of the FPGA and the RPR voter is fairly

compact. Thus it is not surprising that RPR shows terrific power performance.

Careful examination of Table 6.4 reveals that, while the 32-bit TMR circuit uses

about triple the power of the 32-bit unprotected circuit, the 16-bit circuits do not match

expectations. The TMR designs contain three copies of the unprotected circuit plus voter

logic, thus one expects that TMR should use at least three times the power. Further

investigation revealed that the surprisingly low power value for the 16-bit TMR circuit is

due to the lack of triplicated clock and output signals. The TMR and RPR designs built

for this research utilize single-clock circuits with on-chip voting, in part due to I/O

limitations on the CFTP hardware. The clock and output signals account for a large

fraction of the dynamic power consumption in the relatively small 16-bit unprotected

design, which occupies only 3% of the total FPGA. To demonstrate this effect, two

additional circuits were simulated with triplicated clock and output pins. These circuits

cannot be run on the actual CFTP hardware, but can be tested in ModelSim and XPower.

Table 6.5 shows that when the clock network and output data is fully triplicated (thereby

obviating the voter logic), the TMR design does indeed consume three times as much

dynamic power. Note that the unprotected circuit’s power value here is higher than that

in Table 6.4 because the clock dividers in the original circuits had to be eliminated (the

Virtex FPGA allows a maximum of 4 clock networks) and so the 50 MHz input clocks

were driving all circuit components.

127

CORDIC Design Name
(Virtex XQVR600cb228-4)

Area
(Slices)

Dynamic
Power
(mW)

Total
Power
(mW)

Modified 16-bit TMR Iterative

(triplicated clock and outputs)

730 1083 1115

Modified 16-bit Iterative

(with clock divider removed)

231 314 347

Table 6.5 Power Estimates for Modified 16-bit CORDIC Circuits

As explained in [9], dynamic power consumption can also be measured as the

slope of total power as a function of frequency. By running the same circuit at various

clock frequencies, the dynamic power can be isolated from the total power. While

XPower provides this information directly, it is more difficult to measure using actual

hardware. Though this research did not involve measuring power on actual FPGA

devices, such work would be useful for future research. Having actual measurements and

computer simulations for various clock frequencies would aid in validating the

simulations. Table 6.6 shows the frequency-dependent power estimates for two of the

test circuits. Again, the TMR circuit requires more than twice as much power as the RPR

design.

Total Power (mW) CORDIC Design Name

(Virtex XQVR600cb228-4) 25 MHz 50 MHz 100 MHz
Slope
(mW /
MHz)

Improved 32-bit TMR Iterative 334 510 855 6.95

Improved 32-bit RPR Iterative 139 204 331 2.56

Table 6.6 Dynamic Power Inferred from Power Gradient

Another way of interpreting the data from Table 6.4 is to determine the

correlation between circuit size and power consumption. As mentioned in earlier

chapters, smaller circuits generally consume less power. Figure 6.10 shows a scatter plot

for the 8 iterative CORDIC circuits tested. The circuits roughly follow the trend line,

though the trend line was pulled upward by the “Davis TMR” data point. In fact, both

the “Davis TMR” and “Davis RPR” circuits use roughly the same amount of power as the

corresponding “Improved” circuits but are physically much smaller. This is because the

128

XST synthesis software performed poorly when compiling the VHDL version of the 32-

bit CORDIC module (see Appendix A). By excluding that data point, the lower trend

line shows very good correlation between circuit size and power consumption. This

result indicates that circuits with similar function and structure can be expected to have

an approximately linear power-to-area relationship.

Figure 6.10 Scatter Plot of Power Consumption vs. Circuit Size

Though the pipelined circuits were designed to compute the same function as the

iterative designs, their structure was entirely different. Therefore the pipelined circuits

did not follow the same power-area function as the other circuits. Table 6.4 shows that

the pipelined circuits use significantly more power than the iterative versions. However,

the pipelined CORDIC design is much more energy efficient on a per-calculation basis

because of its greater throughput. For example, the throughput of the 32-bit pipelined

circuit is 37 times that of the iterative circuit (see Appendix A), though it only uses 12

times as much power. Similarly, Rollins [100] demonstrated that pipelined multiplier

circuits can reduce both energy-per-calculation and overall power consumption since

pipelining reduces glitching power (see Chapter III). If circuit area is not as significant a

Power Simulation Results

0

100

200

300

400

500

600

0 1000 2000 3000

Slice Count

Po
w

er
 E

st
im

at
e

(m
W

)

TMR

RPR

Unprotected

7 circuits (no Davis
TMR)
All 8 circuits

129

constraint as power, there are options for using a pipeline approach to achieve lower

power. For example, one might use a large pipelined circuit with lower clock frequency

to achieve similar throughput to an iterative design. Alternatively, one might run the

pipelined circuit at full speed for short bursts of time and pause between processing sets

of data to achieve lower average power consumption. The tools and processes used in

this section are valuable for assessing these kinds of design alternatives without relying

upon hardware measurements.

D. SUMMARY
This chapter demonstrates that RPR is a viable option for achieving fault

tolerance with minimal power cost. Fault injection analysis with the unique CFTP SEU

simulator shows that RPR is effective at reducing the probability of suffering SEU-

induced faults in the most significant bits of a circuit’s output. Though the TMR circuits

are roughly twice as effective at eliminating SEU sensitivity across all of the output data

bits, RPR provides comparable SEU reduction across those bits protected by the error

bounds calculations. The TMR designs also require significantly more power. Data from

power simulations verify that TMR uses roughly twice the power of RPR. Thus for

applications where slight inaccuracy is acceptable or power is a significant constraint, the

RPR architecture is superior to the typical TMR approach.

Aside from the data presented in this chapter, this work has developed a set of

tools and processes for effectively comparing different design options. These tools allow

for more informed decisions regarding the trade-offs involved in choosing a fault-tolerant

architecture. Data from SEU and power simulations feed directly into the total

performance metric described in Chapter IV. This permits the evaluation of many

possible design alternatives before building hardware or relying on expensive radiation

chamber testing.

130

THIS PAGE INTENTIONALLY LEFT BLANK

131

VII. RADIATION TESTING

A. OVERVIEW

1. Purpose
Given the many uncertainties involved in predicting the behavior of complicated

electronic devices like FPGAs, it is important to have real-world data to support the

conclusions from simulations and modeling. In this context, “real-world” means

subjecting actual FPGA circuits to radiation levels sufficient to generate SEUs as they

would occur while on-orbit. Radiation experiments were conducted in August and

November of 2005 at Crocker Nuclear Laboratory on the campus of UC Davis. These

tests were intended to 1) validate the SEU simulation environment, 2) verify the

operation of the CFTP fault detection/correction techniques and 3) estimate the actual on-

orbit response of the CFTP experiment. Although extensive radiation testing has been

performed on the same Virtex-II XC2V6000 device used in some of our experiments, to

our knowledge this was the first live proton testing with the Virtex XQVR600 device. It

was expected that these experiments would corroborate results reported elsewhere in the

literature for similar Xilinx FPGAs, but the primary concern in this work was the

performance of the fault-tolerant architectures and techniques developed under the CFTP

project.

The main focus of this dissertation is predicting the performance of the RPR

architecture in comparison to the more common TMR approach. Estimating system

reliability requires several assumptions. In particular, computer system reliability in

space depends on radiation conditions, the susceptibility of digital circuits to that

radiation, and the complex interaction of signals within a circuit. The space radiation

environment has been studied extensively and detailed models are available for general

use. However, the remaining two factors are specific to a given technology and design.

The radiation response of complicated devices, such as FPGAs, is difficult to predict.

Real-world data gathered by exposing actual hardware to realistic radiation sources

provides important validation of the simulation techniques described in Chapter VI.

Several other research groups have conducted radiation testing to characterize the

SEU response of FPGAs. For example, data errors caused by configuration-bit faults,

132

which account for about 98% of all errors [99], are much more common than those due to

flip-flop upsets. Configuration bits in the I/O blocks, lookup tables and routing elements

have similar susceptibility to SEUs, though the LUT bits are the most susceptible [44].

Another important observation is that not all configuration-memory upsets lead to output

data errors [42], [44], [85].

The CFTP test results reconfirm many of these conclusions. More importantly,

these results validate the SEU sensitivity measurements reported in Chapter VI. Finally,

this new data can be combined with other environmental and device data to make

accurate predictions of on-orbit performance for the two CFTP experiments soon to be

launched.

2. Test Equipment, Setup, and Designs

Radiation testing was performed at the Crocker Nuclear Laboratory using the

cyclotron high-energy proton source as part of pre-launch testing of the NPS

Configurable Fault Tolerant Processor (CFTP). The monoenergetic 63.3 MeV proton

beam was tuned to provide a nearly uniform 4 cm square irradiation pattern on the

devices-under-test. The radiation flux was controlled during testing to yield the desired

SEU rate and total dose. Limited data was collected during a short test run in Aug 2005,

whereas the Nov 2005 testing produced a substantial volume of data.

Two hardware configurations were tested at the Crocker facility. The first

configuration included two identical Xilinx Virtex FPGAs, one running the experimental

circuits (“experiment FPGA”) and one commanding the experiment FPGA and

controlling data flow in/out of the board (“control FPGA”), as shown in Figure 7.1

below. This configuration is labeled “C1” and corresponds to the CFTP flight

experiment to be launched on the NPSat-1 and MidSTAR-1 satellites in late-2006. The

second configuration uses the same Virtex control FPGA, but has a more advanced

Virtex-II device as the experiment FPGA. This is labeled “C2” and is a rough prototype

design for possible future CFTP missions. Both configurations use a 50 MHz system

clock, which is frequency divided within each FPGA into 25 MHz and slower clocks, as

required by the various test circuits.

133

Figure 7.1 Hardware Configuration “C1”

Several designs were tested on each hardware configuration. Three shift register

designs were implemented in both the C1 and C2 configurations. These densely-packed

shift register designs were expected to exhibit the highest sensitivity to SEUs since they

had very high utilization of FPGA logic resources. Two CORDIC designs,

corresponding to the TMR and RPR designs examined in Chapter VI, were implemented

on both hardware configurations. Finally, a pipelined MIPS-like microprocessor design

with distributed TMR error detection and voting was tested on the C2 hardware (this was

not tested on the C1 hardware because it exceeded the logic capacity of the XQVR600

device). Table 7.1 lists the names used for each of these circuits, where “…c1” and

“…c2” refer to the same circuit implemented on the different hardware configurations.

Section B presents results for each hardware/circuit combination. More detailed

descriptions of the test equipment, setup and test circuits can be found in [98].

134

Design Name Description
sr_SRL_c1 (c2) Parallel shift registers w/ SRL16 macro

sr_SRL+1_c1 (c2) Parallel shift registers w/ SRL16 and flip-flops

sr_noSRL_c1 (c2) Parallel shift registers w/ flip-flops only

cordic_GOLD_c1 (c2) 32-bit CORDIC w/ TMR

cordic_APPROX_c1 (c2) 32-bit CORDIC w/ RPR

PIX_c2 MIPS-like microprocessor w/ distributed TMR

Table 7.1 Names and Descriptions of Test Circuits

3. Test Procedure

Figure 7.2 outlines the basic procedure followed during radiation testing. These

procedures are similar to those described in other FPGA radiation experiments [44], [99].

It was important to control the rate at which SEUs occurred in order to isolate which

configuration bit upsets were responsible for observable data errors. In these experiments

an SEU rate of one every 30 seconds was chosen to match some earlier diagnostic

procedures for the CFTP experiment. This rate is considerably slower than the SEU time

interval of between 1 and 5 seconds in [44] and the interval of 1 second in [99].

Subsequent enhancements to the CFTP setup permit higher data rates and future testing

could easily support SEU rates of one per second or higher.

135

Figure 7.2 Radiation Beam Test Procedure

Most of the test time for each circuit was spent looping between the “Count and

report errors” and “3 sec status messages” steps while on-board counters automatically

generated new input data vectors. Every 3 seconds an output message was generated that

reported the state of the input, output and error count values from the experiment and

control FPGAs. As long as the radiation-induced SEUs did not lead to observable data

errors at the circuit output, no reconfiguration or device reset was necessary. SEUs were

allowed to accumulate until data errors were observed. Every 30 seconds a complete

configuration readback was performed and all accumulated SEUs reported. Later

analysis of the datastream identified which SEUs were preexisting and which were new

during each readback.

SEUs affecting flip-flops have temporary effects, may only cause a small number

of data errors, and do not necessitate a device reconfiguration. On the other hand, SEUs

affecting configuration bits persist indefinitely, generate many data errors and can only

be corrected through reconfiguration. Therefore, various error counters were

Start radiation
beam

Load test
circuit

Count and
report errors

Error count >
threshold?

3 sec status
messages

30 sec config
readback

Reconfigure
experiment

chip

No Yes

Continue
test?

No

Yes

Stop radiation
beam

136

implemented on the control FPGA to keep track of the number of data errors produced by

the experiment FPGA. These counters automatically triggered a reconfiguration of the

experiment FPGA when the error counter(s) reached a predetermined threshold,

indicating an error-producing configuration fault had occurred. In addition, the test team

was able to manually reconfigure and reset the experiment, as needed.

B. RESULTS
A 1 krad maximum radiation dose was set for each hardware configuration. The

C1 configuration sustained a total radiation dose of 730 rads during its 104 minutes of

beam time, while the C2 configuration experienced 620 rads in 76 minutes of exposure.

These total dose values were well below the 1 krad goal for this testing. Although the

devices tested are predicted to survive a total dose of at least 100 krad, a much more

conservative limit was placed on this testing to avoid damaging the sole CFTP

spaceflight prototype hardware. Furthermore, a low dose was desired for this test

campaign so that additional future testing could be performed on the same devices. Table

7.2 summarizes the data collected during this testing. Runs 1 through 6 were conducted

with the C1 configuration and generated a total of 390 configuration SEUs. Runs 7

through 16 used the C2 setup and generated 2,258 configuration SEUs. The following

sections describe the results in more detail.

137

Design and Run # Total #
SEUs

Re-
configs

Beam
time
(sec)

Sec per
SEU

Multi-bit
upsets

sr_SRL_c1_run1 27 5 489 18.1 1

sr_SRL+1_c1_run2 35 11 329 9.4 2

cordic_GOLD_c1_run3 79 1 1,346 17.0 0

cordic_APPROX_c1_run4 106 0 1,915 18.1 0

sr_noSRL_c1_run5 26 1 421 16.2 0

sr_SRL+1_c1_run6 117 26 1,755 15.0 4

sr_SRL+1_c2_run7 47 9 86 1.8 1

sr_SRL+1_c2_run8 414 52 758 1.8 8

cordic_GOLD_c2_run9 319 5 458 1.4 5

cordic_APPROX_c2_run10 419 0 669 1.6 5

PIX_c2_run11 681 8 1,374 2.0 11

sr_SRL_c2_run13 172 18 302 1.8 0

sr_noSRL_c2_run14 172 57 330 1.9 5

sr_noSRL_c2_run15 27 16 143 5.3 0

sr_SRL+1_c2_run16 75 17 446 5.9 2

Table 7.2 Summary of Radiation Test Results

1. Fluence-to-SEU and Cross Section
A fundamental measure of a device’s radiation susceptibility is the amount of

radiation required to cause a fault and/or error. This information permits the prediction

of upset rates in different orbital regimes. In this research, the main concern is the

sensitivity of FPGA configuration bits since flip-flop upsets are much less common.

Configuration-bit upsets are classified as faults, as they do not necessarily lead to actual

data errors. In this chapter the term SEU refers specifically to upsets affecting

configuration bits, since the tests were designed to only detect this type of fault. As

explained earlier, these bits comprise the vast majority of memory elements on the

FPGAs, accounting for over 99% of faults during radiation testing and on-orbit

operations [99].

The column “Sec per SEU” in Table 7.2 shows a fairly consistent SEU rate within

each hardware configuration, with a few notable outliers. A more precise measurement

138

of radiation susceptibility can be gained by looking at the actual fluence levels, as given

in Table 7.3. Fluence, as measured in protons per cm2, depends on the intensity of the

radiation beam and the exposure duration. The cyclotron was tuned to nearly the same

flux levels for test runs 1 through 14. However, for test runs 15 and 16 the cyclotron

was set to a lower beam current to reduce the SEU rate on the more sensitive Virtex-II

device. This explains the apparent anomaly in the bottom two rows of Table 7.2. The

bottom two rows of Table 7.3 show “Fluence-to-SEU” values consistent with the other

C2 test runs, as expected. The C1 results in Table 7.3 compare favorably with data

presented in [99], where the authors found a fluence-to-SEU of between 9.8 and 13

p+/cm2 for three test circuits on a Virtex 1000 FPGA.

Design and Run # Total #

SEUs
Fluence
(p+/cm2)

x 108

Fluence-
to-SEU
(p+/cm2)

x 106

Sec per
SEU

sr_SRL_c1_run1 27 4.08 15.1 16.9

sr_SRL+1_c1_run2 35 2.91 8.3 8.2

cordic_GOLD_c1_run3 79 11.9 15.1 17.0

cordic_APPROX_c1_run4 106 16.8 15.8 18.1

sr_noSRL_c1_run5 26 3.70 14.2 16.2

sr_SRL+1_c1_run6 117 15.5 13.2 13.9

sr_SRL+1_c2_run7 47 0.71 1.5 1.8

sr_SRL+1_c2_run8 414 8.63 2.1 1.8

cordic_GOLD_c2_run9 319 3.88 1.2 1.4

cordic_APPROX_c2_run10 419 5.61 1.3 1.6

PIX_c2_run11 681 12.1 1.8 2.0

sr_SRL_c2_run13 172 2.70 1.6 1.8

sr_noSRL_c2_run14 172 2.97 1.7 1.9

sr_noSRL_c2_run15 27 0.35 1.3 5.3

sr_SRL+1_c2_run16 75 1.06 1.4 5.9

Table 7.3 Fluence-to-Upset by Test Circuit

As expected, the C2 experiment FPGA was more sensitive than the C1 device.

C2’s more advanced Virtex-II device is based on 0.15 micron technology compared to

139

0.22 micron technology in the C1 Virtex device. These smaller dimensions permit

greater logic density. “Equivalent gate” count is a common method for comparing FPGA

capacity. Xilinx lists the equivalent gate counts for the XQVR600 and XC2V6000

devices tested as 600,000 and 6,000,000 gates, respectively. Based on this ratio, one

would expect the Virtex-II device to be roughly 10 times more sensitive since both

devices have similar semiconductor die sizes. Summing the “Total # SEUs” and

“Fluence” values from all runs in Table 7.3, the fluence-to-upset ratios are 14.1x106 for

C1 and 1.69x106 for C2. This indicates that C2 is more than 8 times as sensitive as C1,

which corresponds fairly well with the rough estimate of 10 based simply on equivalent

gate counts.

Another metric commonly used in radiation studies is cross section (see Chapter

IV). Data from Table 7.3 can be combined with the size of the configuration memory on

each device to estimate configuration bit cross sections. The number of configuration

memory cells on each device is approximately equal to the size of the configuration

bitstream files. The C1 device’s bitstream contains 3,607,968 bits and the C2 device has

21,849,504 bits. This translates into proton cross section values of 2.0*10-14 and 2.7*10-

14 cm2 per configuration bit. Previously published data on another Virtex device gives a

proton cross section of 2.2*10-14 cm2 per configuration bit [88]. This matches very well

with the data collected for the CFTP experiments.

Finally, it should be noted that the anomalously-high SEU sensitivity observed on

test run 2 is not fully understood. Nothing in the test logs indicates a problem with the

radiation source or device under test. Test run 6 on C1 and runs 7 & 16 on C2 used the

same “SRL+1” circuit design, but showed sensitivity values similar to the other circuits.

Thus, it appears that run 2 was a statistical outlier or that some unknown factor affected

its results.

2. Variability of SEUs and Bit Sensitivity
While the preceding analysis shows totaled values for each data run, it is

interesting to note the considerable variability of SEU rates within each run. The random

nature of the proton-induced SEU process causes a distribution in the rate of SEU events.

This can be seen by plotting SEUs as they are detected throughout the tests. The

140

following two figures show the SEU time history for data runs with the RPR version of

the 32-bit CORDIC processor. Figure 7.3 shows the SEU profile from run 4, which used

the C1 hardware. Note that the SEU rate varies between 0 and 6 SEUs during each 30

second readback cycle. This highlights the need to collect large enough data sets to

average out this variability.

Figure 7.3 SEU Profile for Run 4 (C1 Hardware)

Figure 7.4 shows the SEU time history from run 10, which used the C2 hardware.

This run also demonstrates the fluctuating rate at which SEUs appear on the device. This

rate ranges from 7 to 28 SEUs per readback interval, with an average value of 18.

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6
SEUs Detected via Selectmap Readback: cordic_APPROX_c1_run4.log

Selectmap Readback Index @ 30 sec interval

S
E

U
s

pe
r i

nt
er

va
l

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

C
um

ul
at

iv
e

S
E

U
 C

ou
nt

141

Figure 7.4 SEU Profile for Run 10 (C2 Hardware)

Another important conclusion from this testing is that most configuration-bit

upsets do not cause data corruption. The term “sensitive bits” is described in [99] and is

often used to classify those particular configuration bits that, when upset, can lead to

errors in output data. The column labeled “Reconfigs” in Table 7.2 indicates how often

configuration-bit SEUs caused observable data errors and, consequently, triggered a

device reconfiguration. In some of the shift register test circuits, it is possible that flip-

flop upsets could also trigger reconfiguration if they occur near the beginning of the shift

register “train,” but this is estimated to account for less than 5% of the reconfigurations.

Comparing the number of reconfigurations to the SEU counts yields an average

sensitivity fraction of 11% for C1 and 8% for C2. Thus about 1 in every 10 configuration

SEUs is likely to cause data errors.

A large reason for this phenomenon is that most designs do not fully utilize the

FPGA resources. Unused portions of the device do not contribute to the sensitive-bit

count. Nonetheless, even designs that heavily utilize the FPGA show much smaller

sensitive-bit populations than might be expected. Other radiation tests have also shown

this behavior. For example, data from ion testing in [44] shows error-to-SEU ratios of

0 5 10 15 20 25
0

5

10

15

20

25

30
SEUs Detected via Selectmap Readback: cordic_APPROX_c2_run10.log

Selectmap Readback Index @ 30 sec interval

S
E

U
s

pe
r i

nt
er

va
l

0 5 10 15 20 25
0

70

140

210

280

350

420

C
um

ul
at

iv
e

S
E

U
 C

ou
nt

142

between 1:6 and 1:783, depending on which circuit and ion species were tested. Another

proton study reports a sensitivity fraction of between 5% and 15% [99], which is very

similar to results from CFTP testing.

3. Polarity of Bit Flips
Another interesting question is whether there is any preferential polarity with

which SEUs occur. An assumption made in the fault injection simulator and associated

reliability estimates is that 0-to-1 and 1-to-0 bit flips are equally likely. As seen in the far

right column of Table 7.4, the C1 circuits appear to have roughly equal ratios of 0-to-1

and 1-to-0 flips, whereas the C2 circuits have a dramatically higher number of 0-to-1

flips.

To better understand this discrepancy, one must look at the ratio between 0 and 1

values in the fault-free configuration bitstream for each circuit design. If there were no

preferential polarity of bit flips, then the observed ratio of upsets should match the ratio

of bitstream 0 and 1 values. Table 7.4 shows the bitstream count and observed SEU

polarity ratios for each circuit design.

143

Bitstream SEU Polarity
Design and Run # “0” Bits “1” Bits Ratio 0 1 1 0 Ratio

sr_SRL_c1_run1 2,564,645 1,043,323 2.46 16 13 1.23

sr_SRL+1_c1_run2 2,625,121 981,847 2.67 15 25 0.60

cordic_GOLD_c1_run3 2,547,015 1,060,953 2.40 53 26 2.04

cordic_APPROX_c1_run4 2,534,019 1,073,949 2.36 52 54 0.96

sr_noSRL_c1_run5 2,562,171 1,045,797 2.45 13 13 1.00

sr_SRL+1_c1_run6 - - 2.67 76 50 1.52

C1 Totals & Average Ratios 12,832,971 5,205,869 2.47 225 181 1.24

sr_SRL+1_c2_run7 18,979,250 2,870,254 6.61 45 3 15.0

sr_SRL+1_c2_run8 - - 6.61 366 53 6.91

cordic_GOLD_c2_run9 21,758,566 90,938 239 320 4 80.0

cordic_APPROX_c2_run10 21,810,370 39,134 557 423 2 212

PIX_c2_run11 21,244,996 604,508 35.1 663 18 36.8

sr_SRL_c2_run13 19,104,432 2,745,072 6.96 164 8 20.5

sr_noSRL_c2_run14 19,548,310 2,301,194 8.50 160 17 9.41

sr_noSRL_c2_run15 - - 8.50 25 2 12.5

sr_SRL+1_c2_run16 - - 6.61 67 9 7.44

C2 Totals & Average Ratios 122,445,924 8,651,100 14.2 2,233 116 19.3

Table 7.4 Comparison of Observed SEU Polarity and Bitstream Values

These results are somewhat surprising because they show a large difference

between the expected SEU polarity ratios and those observed in actual radiation testing.

The C1 circuits all had actual ratios less than predicted from the bitstream analysis, with a

nearly equal rate of 0-to-1 and 1-to-0 bit flips. Several factors can help explain this

discrepancy. The Xilinx bitstream data files all include numerous “padding” bits

throughout the bitstream. These pad bits ensure the proper alignment and flushing of

various registers during device configuration. By default, pad bits are set to zero. Since

the pad bits do not correspond to actual configuration memory cells, they cause an

upward skew to the “bitstream ratio” values. More than 6% of the bits in each

configuration frame are pad data, thereby accounting for some of this discrepancy. In

addition, there are large BlockRAM elements on the Virtex FPGA that were not used in

the C1 test circuits for these experiments. The configuration readback program for C1

144

was not set up to detect SEUs in these portions of the device. The bitstream values for

these unused BlockRAM regions are set to zero, accounting for over 3% of the bitstream.

Ignoring these two populations of predominately zero values reduces the average

predicted SEU polarity ratio for C1 from 2.47 to 2.24. There is still a significant

difference between this estimate and the observed ratio of 1.24, thus it appears that 1-to-0

SEUs have higher likelihood than 0-to-1 SEUs on the Virtex device.

Data from C2 showed greater variability among the test circuits and, in general,

an opposite trend to that seen with C1. The actual SEUs observed favored the 0-to-1

polarity. Although the BlockRAM bit upsets were detectable in the C2 setup, the issue of

pad bits causing a bias towards higher zero-counts in the bitstream files also applies to

the C2. However, this would exacerbate the discrepancy between the predicted and

observed values. Thus, the Virtex-II device seems more susceptible to 0-to-1 bit flips.

Further investigation into these phenomena is warranted. One way of gaining a

better understanding is through examining the transistor properties of each device. A

similar study with an SEU-hardened Atmel FPGA revealed that 0-to-1 upsets were

roughly 50 times more likely than 1-to-0 upsets [101]. The explanation for this strong

bias was the particular layout of NMOS and PMOS in the configuration memory cells.

An analysis of the Xilinx devices may yield similar explanations, and based on these test

results one might expect to find that the Virtex and Virtex-II parts use different memory

structures. However, such analysis would require detailed information about the internal

design of Virtex devices, which is not made publicly available by Xilinx.

These test results have highlighted that FPGAs may be more susceptible to certain

polarities of configuration-bit upsets. The standard industry practice for calculating

orbital upset rates assumes a single sensitivity value (e.g., fluence-to-upset or cross

section), regardless of polarity. If additional testing and/or analysis confirms that there

are indeed preferred bit-flip orientations, an intriguing possibility for improving FPGA

reliability would involve developing bitstreams with higher percentages of the less

susceptible bit polarity.

145

4. Multiple Bit Upsets (MBUs)

Although the discussion up to this point has assumed that each SEU corresponds

to a single bit flip, it is possible for single particle events to upset multiple bits. This

phenomenon, known as multiple bit upset (MBU), is well-known [17] and recent results

have been published describing MBU probabilities on FPGA devices [102]. Multiple bit

upsets occur when a single energetic particle either directly or indirectly generates

sufficient excess charge density in a localized region to affect more than one memory

cell. MBUs are more common with ion radiation than proton radiation, as heavy ions

transfer much more energy into the semiconductor and thereby affect a larger region of

the device.

MBUs are becoming more common as new FPGAs are developed with denser and

more sensitive logic elements. Proton and heavy ion radiation testing has demonstrated

the progression in MBU frequency over several generations of Xilinx’s Virtex devices.

As a percentage of all proton-induced SEU events, MBUs accounted for 0.04% on the

Virtex, 1% on the Virtex-2, and 3% on the Virtex-4 FPGAs. With ion testing, 7% of all

Virtex and 35% of all Virtex-2 single events involved the upset of multiple bits [102].

As expected, a small number of MBUs were observed during testing of the CFTP

devices. Total MBU counts for each test run are listed in Table 7.2, where each MBU

event is counted as a single SEU. Averaged over all the runs on the Virtex board, they

accounted for 1.8% of the configuration upsets. On the Virtex-2 board they totaled 1.6%

of all SEUs. While the Virtex-2 results correlate fairly well with the results in [102], the

Virtex data here shows a surprisingly high frequency of MBUs. One possible

explanation for this is that several of the test circuits (labeled in Table 7.2 as

“sr_SRL…”) utilize the Virtex “SRL” feature, which converts some of the FPGA’s 4-

input lookup tables into 16-bit shift registers. All of the MBUs detected in the Virtex

runs involved these SRLs, suggesting this may be the cause of the high MBU rates.

Additional testing is required to resolve whether this anomaly is due to the particular

circuit being tested or the physical behavior of the Virtex device.

The CFTP SEU simulator discussed in Chapter VI only injects one fault at a time

and does not simulate MBUs. This is also true for other SEU simulation systems [8],

[99]. MBUs are neglected in these simulations primarily because they are rare, and

146

therefore have a small affect on design sensitivity and reliability calculations. However,

MBUs are more important when using newer devices or considering orbits with

significant populations of heavy ions. MBUs could be included in the CFTP simulator

with minor modifications.

C. VALIDATION OF SIMULATIONS

While the preceding section demonstrates that the CFTP system accurately detects

and reports faults in a real radiation environment, the most important result from

radiation testing is the validation of the SEU simulator of Chapter VI. Following the

methodology in [99], the CFTP radiation test results for the C1 configuration were

compared against predictions from the SEU simulator. These results show that the

simulator accurately simulates radiation-induced SEUs. This validation provides

confidence in the reliability assessments made in Chapter VI, in particular the relative

performance of RPR and TMR.

Two methods were used in this validation process. The first method involved

manually injecting into the simulator specific faults observed during radiation testing and

verifying that the data outputs responded in the same manner. Since the radiation flux

was controlled to ensure only a small number of SEUs occurred during each 30 sec

configuration readback cycle, the exact bits causing persistent data errors could be easily

isolated. These bits were then toggled in the controlled lab environment to verify

whether or not they caused observable data errors in the radiation environment. Due to

the tedium of this process, only a small fraction of the radiation-induced faults were

recreated in this manner. Nonetheless, the CFTP response in the simulator matched that

seen during testing in all trials. Table 7.5 shows verification data for the first 3 SEUs

observed during radiation testing of the TMR version of the CORDIC design. The

columns under the heading “Data Error?” show equivalence between the radiation testing

and artificial fault injection results. The other columns identify the specific configuration

bits for the manual fault injection mode, as detailed in [103].

147

Data Error?
Design and Run # Byte

Location
Read vs.
Expected

Maj.
Addr.

Tile
(Row,Col)

Bit
(Row,Col)

Sim. Rad.

01d31d
0x82 vs

0x02
21

(49,53)

(08,27)
No No

027593
0x38 vs

0x18
28

(27,26)

(06,38)
No No cordic_GOLD_c1_run3

02e026
0x02 vs

0x00
33

(46,59)

(12,25)
Yes Yes

Table 7.5 Example of Manually Verifying SEU Effects

The second method involved exhaustive simulator testing of every bitstream value

using the automatic mode. This automatic mode is the main operational mode for the

simulator and was used in generating the design sensitivity results in Chapter VI. Design

sensitivity data for both the TMR and RPR versions of the 32-bit CORDIC processor

were compared against the 185 configuration upsets observed during testing. Comparing

results from upsetting these same 185 bits validated the automated mode of the SEU

simulator. Table 7.2 shows that only 1 of these upsets led to an actual data error, which

was verified as shown in Table 7.5. The single sensitive bit (located within byte

0x02e026 of the TMR CORDIC design) causes data errors in both the simulator and

radiation data. Likewise, the remaining 184 bits are all found to be non-sensitive in the

simulator and radiation data.

Figure 7.5 shows a close-up view of a portion of the SEU sensitivity map

generated from the simulator. The black squares in the figure represent individual

configuration bits that, when artificially upset in the simulator, lead to data errors. The

remaining configuration bits are non-sensitive and appear in the map as white squares.

Radiation-induced SEUs that occur in the white regions are not expected to lead to data

errors. The red square (circled) represents a bit that experienced an SEU during radiation

testing, but did not cause any data errors. This red square coincides with a white non-

sensitive bit, thus corroborating the simulator data declaring this a non-sensitive bit. This

comparison method was used to verify that that all 184 non-sensitive bits from radiation

testing correspond with non-sensitive bits as determined by simulations.

148

1220 1225 1230 1235 1240 1245 1250 1255 1260

465

470

475

480

485

490

Figure 7.5 Locations of Sensitive Bits (Simulator, black) and SEUs (Radiation, red)

Likewise, the single sensitive bit detected during radiation testing was replicated

in the simulator. Figure 7.6 shows the region of the FPGA in which the error-producing

SEU appears in the Davis data. Again, the black squares show error-producing bits found

in the simulator and the circled red square shows a non-error producing bit that was upset

in radiation testing. The important feature shown in this figure is the green square,

surrounded by a diamond, which is the location of the error-producing SEU found during

run #3 of Davis testing. The green color indicates that both the simulator and radiation

data show this bit to be error-producing.

149

2635 2640 2645 2650 2655 2660 2665 2670 2675

775

780

785

790

795

800

805

810

815

820

825

Figure 7.6 Correlation of Sensitive Bit (green) from Simulator and Radiation

Run #4 of the Davis testing identified 106 SEUs, none of which triggered a

reconfiguration. Simulator data indicates that two of these 106 bits are actually capable

of causing data errors. However, the simulator shows that these errors occur in the least

significant positions of the output data. Thus, the 8-bit RPR upper/lower bounds

checking would not detect such errors and trigger a reconfiguration. The radiation-

induced SEUs affecting these two particular bits occurred during the 32nd and 35th

readback cycles. Analysis of the run #4 data file shows that the LSBs in X2’s output did,

in fact, differ from the X1 solution, starting in readback cycle 32. This implies that the

first of these SEUs was responsible. The effect of the second SEU is unclear because the

first SEU was not corrected (no reconfiguration occurred) and therefore continued to

affect the data output. Throughout the remainder of run #4 the least significant bits of the

32-bit X2 output had random errors.

The version of the SEU simulator used in this dissertation was customized to

work only with the CFTP flight system. Unfortunately, the simulator is not directly

compatible with the Virtex-II board. Therefore, radiation data with the C2 configuration

was not used in this validation effort. As listed in Table 7.2, the CORDIC circuits on the

150

C2 hardware experienced 5 data-corrupting bit upsets and a total of 738 SEUs. All 5 of

the data-corrupting SEUs occurred on the “GOLD,” or TMR, version. This data would

be of great benefit if the SEU simulator were expanded to work with the Virtex-II board.

Although very few sensitive bits were encountered in radiation testing, both

sensitive and non-sensitive bit SEUs provide valuable confirmation of the accuracy of the

SEU simulator. Furthermore, since the results from Chapter VI show a low percentage of

sensitive bits, it isn’t surprising that only 3 out of 185 SEUs caused detectable errors for

the CORDIC designs on C1. The SEU simulator measured these circuits to have bit

sensitivity percentages of 1% to 3%. Therefore, one would expect to see less than 6

sensitive bits out of a population of 185.

D. ON-ORBIT RELIABILITY

The primary motivation for conducting ground-based radiation testing and SEU

simulations is to estimate a system’s reliability in its operational environment.

Combining test and/or simulation data with models of the space radiation environment

provides useful predictions of how often a particular device is likely to malfunction. This

information is critical for determining whether system-level reliability requirements can

be met with a particular design solution.

On-orbit reliability has long been a concern to the spacecraft computing

community, and interest in the radiation tolerance of FPGAs is rapidly increasing. In a

space experiment similar to the CFTP experiment, the Australian FedSat satellite was

launched in Dec 2002 with a high-performance computing experiment package including

a Xilinx XQR4062XL FPGA. The designers predicted an SEU interval of between 9.7

minutes and 110 hours for a 680 km sun-synchronous orbit [3]. The large range in this

estimate is due to the variability in space radiation levels caused by solar activity. It is

important to note that the FedSat FPGA is an older generation than the Virtex parts used

in the CFTP experiment (62,000 vs. 600,000 equivalent gates). If CFTP flew in a similar

orbit to FedSat, it would be expected to have roughly 10 times the SEU rate, or between 2

and 1,400 SEUs per day.

151

Another FPGA space computing program is currently underway at Los Alamos

National Lab with the Cibola Flight Experiment satellite [16]. This satellite will be

launched in late-2006 on the same STP-1 mission as the CFTP experiments and uses a

total of 9 Xilinx Virtex XQVR1000 devices. In the planned 560 km 35º inclination orbit,

each Virtex FPGA is expected to see between 3 and 100 SEUs per day, depending on

solar flare activity [1]. The FPGAs on CFTP are the same generation as the Cibola

devices, but are somewhat smaller (600,000 vs. 1,000,000 equivalent gates), and should

therefore suffer roughly 60% as many SEUs, or between 2 and 60 per day.

Accurate estimation of on-orbit performance requires a thorough understanding of

the space radiation environment. The spacecraft’s orbit determines the quantity,

composition and variability of ionizing radiation the spacecraft will encounter. In low

earth orbit (LEO), trapped high-energy protons are the dominant source of SEUs, though

their population varies as the earth’s magnetosphere fluctuates in response to solar

activity. Furthermore, protons in the region known as the South Atlantic Anomaly

(SAA) are responsible for the vast majority of SEUs in LEO, even though most LEO

spacecraft spend less than 15% of their orbits in the SAA region. At geosynchronous

altitude, SEUs are predominately caused by cosmic rays and solar flare particles. The

radiation environment at high altitudes varies widely due to solar flare activity [17].

Models of the complex and variable space radiation environment include AP-8,

SPACERAD, CHIME, JPL and CREME. The expected SEU rates quoted earlier for the

FedSat and Cibola spacecraft were based on these computer models. The European

Space Agency hosts a website called SPace ENVironment Information System

(SPENVIS) that provides access to the most commonly used radiation models for making

detailed predictions of the space environment. These models were used in this research

to predict upset rates of CFTP in its planned 560 km orbit. Considering only the trapped

proton population, the orbit-averaged flux of sufficiently energetic protons (>20 MeV)

varies between 60 and 200 per cm2 per second, depending on solar conditions and which

model is used. Based on the data from Section B above, these radiation levels should

produce 0.37-1.2 SEU/day in the Virtex device and 3-10 SEU/day in the Virtex-II device.

Using the CREME96 models and some slightly different assumptions, Coudeyras

152

predicted a Virtex upset rate of 0.2 SEU/day and Virtex-II rate of 1.8 SEU/day [98].

Table 7.6 compares the SEU rate estimates calculated from the CFTP test data with those

extrapolated from similar studies [1], [3].

SEU per day (LEO orbit) Method of Calculation

C1 (Virtex) C2 (Virtex-II)

CFTP radiation test data + SPENVIS models 0.37 – 1.2 3 – 10

CFTP radiation test data + CREME96 models 0.2 1.8

FedSat data (scaled from XQR4062 results) 2 – 1,400 20 – 14,000

Cibola data (scaled from XQVR1000 results) 2 – 60 20 – 600

Table 7.6 Summary of Radiation Test Results

The numbers based on the CFTP-SPENVIS and CFTP-CREME96 data are

considerably lower than the values extrapolated from studies on similar devices. Because

the cross sections measured in the CFTP tests are very similar to other published test

results, this discrepancy must be due to differences in the assumed proton flux levels.

For example, the values produced from the SPENVIS tools may be somewhat low. They

estimate between 5*106 and 1.7*107 p+/cm2/day, whereas graphs in [17] show between

107 and 108 p+/cm2/day with energy greater than 30 MeV without solar flare

enhancement.

Differences in how the models predict strong solar flare events could account for

the discrepancy in the upper bounds. There is disagreement in the literature about the

intensity of “normal” and “anomalously large” solar flares, which is reflected in the

different radiation models. Two additional factors may explain the discrepancy in the

lower bounds. First, the calculations performed here discount any affect of heavy ions

(cosmic rays), as most researchers consider them negligible in LEO. The FedSat and

Cibola data may include the contribution of these energetic ions. Second, the FedSat and

Cibola data do not report the proton energy threshold used in their studies. A threshold

lower than the 20 MeV used here would increase the estimated SEU rates since the

proton population decreases exponentially as a function of energy level. Some of the

researchers involved in the Cibola study indicate in a separate report that they typically

use a threshold of 10 MeV.

153

While determining SEU rates is an important part of estimating reliability, the

SEU rates alone are not sufficient to compare the overall fault tolerance of different

designs. From a system-level perspective, the primary concern is operational reliability,

or the probability that the system provides correct results. The functional reliability of an

FPGA circuit can be predicted by combining estimated SEU rates with design sensitivity

measures from a fault simulator like that in Chapter VI. For example, if only 10% of the

configuration bits in a particular design are capable of causing data errors, the actual

failure rate would be 10% of the SEU rate. Fault-tolerant FPGA designs seek to

minimize the fraction of SEUs that lead to errors.

Comparison of various fault tolerance methods must be based on the functional

reliability of each approach. Fault injection simulations provide the design sensitivity

data for competing design alternatives. This data can then be used to calculate the

reliability metric incorporated into the Total Performance Metric of Chapter IV.

Together, the simulation and TPM tools provide a objective method for evaluating the

overall efficiency of various fault-tolerant designs.

An important result from this chapter is the validation of the SEU simulator from

Chapter VI. Analysis of nearly 200 proton-induced SEUs affecting two CORDIC test

circuits shows that the C1 hardware behaves identically in the simulator and the ground-

based radiation test environment. Hence, it appears that the simulator accurately

represents the response of the CFTP hardware to real space radiation conditions. The

successful performance of the configuration readback and reconfiguration mechanisms in

both the simulator and radiation testing gives confidence that these procedures will

function effectively during CFTP flight experiments. Once the CFTP experiments are

launched, these conclusions can be verified by SEU data in the real orbital radiation

environment. In addition, analysis of over 2,500 SEUs reveals proton cross section

values for Virtex and Virtex-II FPGAs of 2.0*10-14 and 2.7*10-14 cm2 per configuration

bit, respectively, which is comparable to the published value of 2.2*10-14 cm2. Finally,

using this data to estimate on-orbit SEU rates indicates that in its low-earth orbit CFTP

will experience only one to two upsets per day.

154

THIS PAGE INTENTIONALLY LEFT BLANK

155

VIII. PRACTICAL RPR IMPLEMENTATION ISSUES

A. OVERVIEW
This chapter addresses some practical concerns about applying RPR to real-world

problems. Building on the discussion from Chapter II, the first section addresses whether

a particular algorithm can be converted into approximated versions to provide the upper

and lower bounds calculations for the RPR architecture. The discussion focuses on the

practical aspects of creating useful and accurate error bounds calculations. The second

part of the chapter presents a real-world application to demonstrate the appropriate use of

RPR. An image compression algorithm provides a case study to investigate the effect of

inexact results in an RPR system due to SEUs. This section describes a methodology to

estimate such effects and improve the system design process. As the case study

demonstrates, it is quite acceptable in many applications to occasionally produce lower

precision results, especially considering the power and area savings of RPR over a TMR

approach.

B. WORKING WITH UPPER AND LOWER BOUNDS ESTIMATES
Chapter II acknowledges that although many applications and algorithms are

amenable to the RPR approach, some are not. Computational problems are classified as

either Class A or Class B depending on whether RPR is an appropriate method of gaining

fault tolerance. Figure 2.12 describes the steps for determining if a problem is Class A or

B. Step 3 of this process asks whether approximate solutions can be formulated. Chapter

II approaches this question by considering how functions affect the relationships between

input and output “clusters.” This chapter takes a more practical approach to explore how

typical numerical functions can be approximated and implemented in FPGAs.

1. Properties of Numerical Functions Amenable to Approximation

A function must meet several conditions in order to apply the approximation

techniques described below. First, the function must be well-behaved. That is to say that

it is single-valued, continuous over the (possibly restricted) domain of input values, and

156

has a continuous first derivative. A common function that violates the single-valued

restriction is the square root. If both positive and negative solutions are permissible, two

equally correct solutions are possible. Thus, depending on the calculation method(s),

there may be ambiguity when developing approximations to compare against full-

precision solutions. For example, a Newton-Raphson method, which converges towards

a final answer over a series of iterations, might produce positive or negative solutions

depending on the initial guess and computational precision. The sign function, defined as

+1 for inputs greater than 0 and as –1 for inputs less than 0, and the step function are

other common functions that do not meet the criteria of well-behaved. Due to

discontinuity at the origin, they may evaluate to different solutions depending on

numerical precision and rounding.

A second, and more restrictive, condition that is relaxed in subsequent sections is

that the function should be monotonically increasing or decreasing. This ensures

consistency with regard to the method of calculating the upper and lower bounds. Figure

8.1 shows how the relationship between the precise solution and the high/low estimates

changes depending on whether the function has a positive or negative slope. In regions

with a positive slope, the lower bound can be calculated based on a rounded-down

version of the precise input value. In regions with negative slope, processing this

rounded-down input value yields an upper bound.

Precise

Low

High

Precise

High

Figure 8.1 Upper/Lower Bounds for Sine Function

157

For periodic functions, such as the sine function in Figure 8.1, one can define a

restricted range of allowable input values over which the function is constantly increasing

or constantly decreasing. Values outside this range could be “mapped” into this range

through appropriate shifting by some multiple and/or fraction of the period. For the sine

function, this involves addition/subtraction by integral numbers of π. For aperiodic non-

monotonic functions, one needs to either restrict input values to a monotonic region of

the function or incorporate special techniques for dealing with regions where the slope

changes sign, as discussed below.

It is important to maintain a consistent convention for calculating the lower/upper

bounds and comparing them with the precise solution. The voter in an RPR architecture

requires an upper bound that is always greater than or equal to the precise solution.

Likewise, the voter’s lower bound input must be less than or equal to the precise solution

for all input values. Otherwise numerical comparisons made by the voter will be non-

deterministic and the design will be greatly complicated.

Ensuring the proper relationship between the precise, upper, and lower solutions

is especially challenging near stationary points, where the function’s slope changes from

positive to negative, or vice versa. The following section discusses different techniques

for calculating the upper/lower bounds using an abbreviated version of the precise input

value. One common method is to calculate the lower bound from a rounded down input

value and calculate the upper bound from a rounded up input. A simple voting

convention assumes that the output computed from the smaller input value is the lower

bound and the output from the larger input value is the upper bound.

Figure 8.2 shows the difficulty with this approach when the input value is near a

stationary point, which is marked by the green arrow. The left frame of the figure shows

the desired situation, with the upper and lower values properly bounding the precise

solution. The right frame shows what happens after the function crosses the stationary

point. In this situation the “low” estimate is actually larger than the “high” estimate,

since the function’s slope has changed from positive to negative. This invalidates the

voting mechanism, which requires the precise solution to be larger than the low estimate

and smaller than the high estimate. When the low and high input values straddle the

stationary point, the situation can be complicated even more. The center frame shows an

158

example where the precise input produces an output value larger than that calculated

from either the low or high inputs. Thus, even in a fault free condition, the voter detects

an error since the precise solution does not fall within the bounds.

1.2 1.4 1.6
0.9

0.92

0.94

0.96

0.98

1

1.02

Precise

Low High 1.4 1.6 1.8
0.9

0.92

0.94

0.96

0.98

1

1.02

Precise

Low High 1.5 2
0.9

0.92

0.94

0.96

0.98

1

1.02

Precise

Low High

Figure 8.2 Upper/Lower Bounds in Vicinity of Stationary Points

Also shown in the right two frames of Figure 8.2 are the proper error bounds

(yellow double-headed arrows) surrounding the precise solutions. In the middle frame,

the output computed from the “high” input falls below the precise output value. The

proper upper bound must be equal to or greater than the maximum possible precise output

value over the low-to-high range. In the right frame, the upper and lower bounds

surround the precise value, but their relationship to the “low” and “high” inputs are

swapped relative to the left frame. A voter designed to work with upper/lower bounds

following the convention of the left frame (low input lower bound and high

input upper bound) would not properly resolve the situation shown on the right.

2. Lookup Tables versus Direct Calculation
Some of the problems described in the previous section regarding non-monotonic

functions can be alleviated by calculating the upper/lower bounds with lookup tables. In

fact, in many cases a lookup table approach is preferred. Assuming the precision

required for the approximate solutions is reasonable, lookup tables are relatively small

159

and more power efficient than methods that perform mathematical calculations. Lookup

tables are easy to implement in modern FPGAs and can be customized to any particular

function.

The general architecture for calculating upper and lower bounds in parallel with a

precise solution is shown in Figure 8.3. The input vector is divided into two sections.

The most significant (leftmost) bits are supplied to all three functional blocks while the

least significant bits are supplied only to the precise calculation. Though the variables m

and n will vary between applications, the values 8 and 24 are used here to correspond

with the 32-bit full-precision and 8-bit approximate CORDIC calculations used elsewhere

in this dissertation.

Figure 8.3 Architecture for Calculating Precise and Upper/Lower Bounds Solutions

A fundamental premise leading to the layout shown in the figure is that, for

monotonic functions, the precise solution can be bounded by independent calculations

using values that bound the precise input number. Note in the figure that the “low” and

“high” estimates may use different versions of the input vector MSB block. The input to

flow(x) is essentially a truncated version of the precise input value. For standard binary

number systems (unsigned, two’s complement, one’s complement, etc.), truncation

represents a rounding down of the input. The optional block g(x) often simply

m=8 n=24Input m+n=32

fprecise(x)

flow(x)

h(y) g(x)

fhigh(x)

32

8

8

Precise
Result

Low
Estimate

High
Estimate

160

increments the input (though it may be necessary to check for overflow conditions or

other special cases). Alternatively, this block can be eliminated if the function fhigh(x) is

designed to operate directly on the truncated input values. A lookup table for fhigh(x), for

example, can be programmed to accept the truncated values, making g(x)unnecessary.

The three main functional blocks shown in the figure can be completely unique

solutions to the numerical function being solved. For example, if the numerical function

is addition, the precise solution might involve a fast carry look-ahead structure while the

approximate modules may use a simpler ripple-carry approach. The RPR circuits in this

dissertation compute sine and cosine using the CORDIC method for the precise solution

and lookup tables for the upper/lower bounds.

The outputs from the low and high estimates are shown as m-bit values,

corresponding to the precision that can normally be achieved given an m-bit input.

However, in some situations these outputs can be expressed more precisely. For

example, lookup tables can provide arbitrarily high precision outputs by generating

values through high-resolution offline computations. This is useful for maintaining tight

error bounds, especially in regions where the function has a small slope.

In some cases, it is possible to replace the block fhigh(x) with a simpler conversion

of the low estimate. The operation h(y) applies prior knowledge of the expected

relationship between the low and high estimates to convert the output from flow(x). For

example, the high estimate can be calculated by adding the maximum difference between

low/high bounds to the low estimate. In this way the operations g(x) and fhigh(x) can be

replaced with a simple adder in h(y). A drawback to this approach is that it reduces SEU

fault tolerance since faults in the flow(x) block lead to inaccurate estimates of both the

lower and upper bounds. However, the function h(y) can be useful in conjunction with

separate flow(x) and fhigh(x) blocks by verifying that their results are properly spaced.

Although lookup tables are easy to use, care must be taken to ensure they

correctly represent the upper and lower bounds of the function throughout the entire input

space. To generate the contents of the lower bound lookup table, the full precision

solution for all 2m possible truncated input values must be calculated. Assuming the

function has a positive slope, these high-precision solutions computed can then be

truncated (i.e., rounded down) to yield the lower bound values. There are several options

161

for creating the upper bound lookup table. First, if the “preprocessor” g(x) is used, the

same lookup table can be used for both the low and high estimates. However, this is only

guaranteed to give reliable bounds for monotonic functions, as highlighted in Figure 8.2.

Second, each m-bit truncated input can be incremented by one and used to calculate a

high-precision solution, which can then be rounded up. Unfortunately, this method can

also fail near stationary points. Third, prior knowledge about the maximum gradient of

the function can be used to properly offset the two lookup tables. For example, since the

sine function has a maximum slope of +1, the low and high estimates should differ by

only a single bit in their least significant digit. Finally, in regions of negative slope, the

upper and lower bound lookup table values should be swapped.

Even with lookup tables, great care must be taken near stationary points. If the

rounded up and rounded down versions of the precise input value straddle a stationary

point, the function should be evaluated at both points. If the function’s second derivative

is negative (i.e., local maximum), the lesser of these two solutions should be assigned as

the low estimate. In this case the high estimate can be computed by adding the function’s

maximum slope value to the low estimate. On the other hand, if the function’s second

derivative is positive (i.e., local minimum), the greater of the two solutions becomes the

high estimate and the low estimate is computed by subtracting the maximum slope value.

Continuing with the sine function example, Figure 8.4 shows three sample points

along the curve. The left and right frames show the local min/max at –π/2 and +π/2, and

the middle frame shows the function at -π/8. In this figure, the points on the horizontal

axis are determined with 32-bit and 8-bit precision for the precise and low/high inputs,

respectively. Note that the low/high inputs in the left and right frames straddle the

stationary points. Again, yellow block arrows indicate the desired proper error bounds.

In this case, the proper error bounds always span the same vertical distance since the

upper/lower bounds should differ by just one digit in the LSB position of the 8-bit

estimates (recall that the sine function’s maximum slope is 1).

162

-1.58-1.575-1.57-1.565

-1

-1

-1

0.9999

0.9999

0.9999

Precise

Low
High

-0.45 -0.4
-0.4

-0.395

-0.39

-0.385

-0.38

-0.375

-0.37

Precise

Low

High

1.5651.571.5751.58
0.9999

0.9999

0.9999

1

1

1Precise

Low
High

Figure 8.4 Approximating Sine Function at Three Sample Points

Table 8.1 presents an initial attempt at generating entries for the low/high estimate

lookup tables. The decimal values correspond to the data points shown in Figure 8.4

above, whereas the hexadecimal numbers show the binary equivalent of each value

rounded to the appropriate precision (following the two’s complement number system

defined in Table 8.2 below). As the figure demonstrates, there is some confusion in the

left and right frames since the precise solution falls outside the bounds set by the rounded

input values. Likewise, the table shows trouble near ±π/2 since the 8-bit truncated output

values allow no tolerance for the precise solution.

x Input Output
Precise -1.570796327 0x9B7812AF -1.000000000 0xC0000000

Low -1.578125 0x9B -0.999973 0xC0 -π/2
High -1.562500 0x9C -0.999966 0xC0

Precise -0.392699081 0xE6DE04AC -0.382683432 0xE7821B5A

Low -0.406250 0xE6 -0.395167 0xE6 -π/8
High -0.390625 0xE7 -0.380766 0xE7

Precise 1.570796327 0x6487ED51 1.000000000 0x40000000

Low 1.562500 0x64 0.999966 0x3F +π/2
High 1.578125 0x65 0.999973 0x3F

Table 8.1 Initial Attempt at Generating Lookup Tables for Sine Function Approximation

163

Bit# 31 30 29 28 27 26 25 24 … 1 0
Precise

Value -21 20 2-1 2-2 2-3 2-4 2-5 2-6 … 2-29 2-30

Bit# 7 6 5 4 3 2 1 0
Estimates

Value -21 20 2-1 2-2 2-3 2-4 2-5 2-6

Table 8.2 Fixed-Point Two’s Complement Number Formats for Example in Figure 8.4

The steps outlined earlier in this section aid in resolving these problems. The

second derivative is positive near -π/2, so the procedure says to take the larger value as

the high estimate (0xC0) and subtract one to get the low estimate (0xBF). There is no

problem near -π/8, so those lookup table entries are unchanged. Near π/2 the second

derivate is negative, therefore the smaller value is assigned to the low estimate (0x3F)

and the high estimate is incremented from that value (0x40). Note that in all three cases

the precise solution is within the error bounds defined by these low and high estimates.

In fact, because the sine function has a maximum slope of 1, the 8 MSBs of the precise

solution will match either the low or high estimate for every input value. Also note that

the block g(x) is not needed because the low and high estimate lookup tables can be

indexed using only the 8 MSBs of the precise input value.

x Input Output
Precise 0x9B7812AF 0xC0000000

Low 0x9B 0xBF -π/2
High 0x9C 0xC0

Precise 0xE6DE04AC 0xE7821B5A

Low 0xE6 0xE6 -π/8
High 0xE7 0xE7

Precise 0x6487ED51 0x40000000

Low 0x64 0x3F +π/2
High 0x65 0x40

Table 8.3 Improved Lookup Table Entries for Sine Function Approximation

3. Improved Method for Generating Lookup Table Estimate Values

The preceding sections highlighted some of the challenges of developing

approximate solutions to numerical functions and showed how lookup tables can

164

overcome some of these challenges. This process can be made even more robust using

the procedure described below to generate the lookup table contents. Through this

method, lookup table approximations can be applied to a broader class of functions,

thereby eliminating some of the restrictions imposed earlier in this chapter.

The basic concept for this alternative approach is that the off-line calculations

generating the lookup table contents can incorporate maximum/minimum detection over

the entire input range between “low” and “high.” Instead of calculating the function at

only the “low” and “high” rounded input points, the function is evaluated at every point

in between that could be input to the precise module in Figure 8.3. Referring to Figure

8.3, there are 2n of these intermediate input values for each m-bit truncated input value.

As these points are evaluated starting at the low input value and moving towards the high

input, max/min variables are stored and updated as appropriate. Once the high input

value is reached, the minimum output is rounded-down (truncated) and the maximum

output is rounded-up. These values are stored in the low and high lookup tables,

respectively. No matter where in this range the precise input value actually exists, the

upper/lower estimates will properly bound the precise output.

This concept is shown in Figure 8.5 below, where the low and high inputs differ

by one bit in their LSB position and the intervening points are spaced according to the

bit-length of the precise input vector. For this hypothetical function, neither the low nor

high input values yield useful error bounds. The horizontal red lines mark the maximum

and minimum values of the function over the range low to high, thus these extrema

should be entered into the low and high lookup tables.

165

Low High

Figure 8.5 Generating Lookup Table Error Bounds for Arbitrary Functions

This approach requires no assumption about the type of function being evaluated

and can easily handle discontinuities and stationary points. One simply computes each of

the 2n unique input values for each m-bit MSB sequence and records the max/min values.

These max/min values are then rounded up and down before being entered into the high

and low estimate lookup tables. However, the computation time required to calculate and

compare 2n inputs for all 2m lookup table entries can be burdensome. For example, using

MATLAB (running on a 1.86 GHz Pentium machine) to compute every sine function

result when m+n = 24 bits, takes roughly 12 seconds. It would take over 50 minutes to

do these calculations when m+n = 32 bits. Nonetheless, the upper/lower lookup tables

only need to be generated once for a particular combination of m and n precision levels.

Thus, when practical, the procedure described above is perhaps the most effective way of

creating the RPR error bounds lookup tables.

4. Designing a Voter to Compare Precise and Approximate Calculations
Although the notion of checking whether a high-precision solution is within

particular error bounds seems intuitive, implementing this error check in computer

hardware requires careful design. In particular, for FPGA designs it is possible for any

component in the circuit to suffer SEUs. An important aspect of RPR designs is that the

166

physically-larger precise-computation module is more likely to be affected by SEUs than

the smaller redundant modules. Nonetheless, the error bounds are susceptible to faults.

Figure 8.6 shows various fault conditions in an RPR circuit, assuming that only one

module can be faulty at any given time.

Figure 8.6 Possible Error Conditions in RPR

In the fault-free situation (a), the voter finds the exact solution is within the error

bounds and forwards this result to the output. When the exact solution is faulty and falls

outside the bounds (b), a logical option is for the voter to output the midpoint between the

lower and upper bounds. Some faults to the upper/lower bounds cause data errors, while

others may go undetected. The left diagrams for situations (c) and (d) show cases where

the fault is transparent to the voter, since the exact solution falls within the bounds.

However, the right diagrams for (c) and (d) show situations the voter will detect.

However, when the upper and lower bounds are incorrect relative to each other, the voter

assumes a single fault has upset the error bounds and outputs the exact solution. Figure

8.7 presents pseudo-code describing the voter behavior in an RPR design. Again, it is

lower

upper

Exact

lower

upper

Exact
lower

upper

Exact

lower

upper

Exact

lower

upper

Exact
lower

upper

Exact

lower

upper

Exact

(a)
Fault-free

(b)
Error in
Exact

(c)
Error in
Upper

(d)
Error in
Lower

167

important to point out that this voting methodology assumes there is never more than one

faulty module in the circuit.

Figure 8.7 Pseudo-code for RPR Voter

This voting procedure is simplified further if the function has a maximum slope of

one. In this case, the upper and lower bounds always differ by the equivalent of one bit

in the least significant digit. This is because the inputs to the low/high modules differ

numerically by the value of one in their LSB position, as mentioned in the previous

section. For the exact solution to fall within the error bounds, its most significant bits

must correspond to the bits in either the upper or lower bound. Thus the voter only needs

to check whether the MSBs of the exact solution equal either the lower or upper bound.

C. CONSEQUENCES OF IMPRECISION
Though system engineers generally desire maximum possible precision in

mathematical computations, compromises must be made between the costs and benefits

of high precision. In many applications, lower precision calculations act like a source of

noise, causing a degradation in quality similar to sensor noise, environmental

disturbances, and other noise sources. Most systems can tolerate a limited amount and/or

duration of noise. Those that cannot are generally not robust enough to use in real-world

applications. This section demonstrates that occasional lower precision results caused by

radiation-induced SEUs in an RPR system are nearly undetectable in certain applications.

Image processing serves as an example of a useful function in which RPR and the

CORDIC algorithm can be used effectively. In this application, RPR is superior to

alternatives such as TMR or an SEU-intolerant design.

if (exact(MSB) >= lower) and (exact(MSB) <= upper)
output = exact

else if (upper <= lower)
output = exact

else
output = lower(MSB) + 1/2 (upper-lower)

end

168

1. Scenario Description

The scenario investigated here is an extension of the satellite image processing

example presented in Chapter IV. The engineer’s task is to build an image compression

circuit in order to minimize downlink bandwidth consumption. FPGAs are well-suited

for this task for several reasons. In addition to being significantly less expensive than

custom ASIC chips, they are readily available and can be quickly integrated into the

spacecraft system. Furthermore, the ability to load different circuit configurations in real-

time will enable dynamic optimization of the image compression algorithm.

The image compression processor is tasked with reducing the number of bits-per-

pixel necessary to reconstruct single frame images collected by an onboard camera. The

camera is a 512x512 pixel panchromatic imager operating at a nominal 1 Hz frame rate.

Each pixel’s gray scale intensity level is represented with 16-bits of dynamic range. In

order to support continuous image collection and transmission, the image compressor

must process over 262,000 pixels per second (or 3.81 micro-sec per pixel). These data

rates are easily supported by current FPGA technology, which can operate at clock

speeds over 100 MHz.

However, there is concern about the SEU tolerance of FPGAs since their

configuration logic is susceptible to radiation-induced upset. Therefore, the engineer

must develop a fault-tolerant design while minimizing the area and power consumption.

There are three main goals for fault tolerance in this situation. First is the detection of

errors. Without some mechanism for detecting errors, SEUs can cause the satellite to

transmit corrupted imagery indefinitely. By including error detection on the spacecraft,

the system can either automatically take corrective action or notify operators on the

ground so they can initiate recovery efforts. Second, in conjunction with error detection

it is desirable for the system to perform some error correction until corrective measures

can successfully remove any SEUs. This ensures that the satellite continues to provide

images of satisfactory quality even when SEUs affect the circuit. Finally, there must be

some means of fault correction, which for FPGAs involves rewriting the configuration

memory contents. Error detection accelerates the fault correction step by identifying the

region(s) affected by SEUs and focusing recovery efforts toward those components. All

three of these goals are supported by the RPR approach.

169

2. Image Compression with Discrete Cosine Transform
One of the most common data compression techniques involves the discrete

cosine transform (DCT). It has been widely used in image and video compression

applications [104] for reducing bandwidth consumption in transmission and minimizing

data storage requirements. DCT is one of the methods used in the well-known JPEG and

MPEG standards [25], [63]. Many satellites, both government and commercial, perform

image collection and dissemination. Thus there is significant practical interest in

examining the reliability and performance of a DCT algorithm for space applications.

The DCT has been successfully implemented in VLSI, PLD and FPGA hardware

technologies [104], [105], [106]. Several architectures have been proposed in which

CORDIC processing elements are used to calculate the DCT [92], [93], [107]. By

appropriately setting the x, y, and z inputs, the CORDIC algorithm can perform

multiplication in conjunction with calculating sine and cosine functions. Using this

approach, CORDIC is a particularly efficient method of computing the DCT.

Finally, it is important to recognize that digital systems are incapable of

representing real numbers with absolute precision [63]. Thus the DCT, which operates

upon real numbers, is well-suited to various approximation techniques, and RPR is an

appropriate method of achieving fault tolerance for DCT designs.

a. Background
The DCT, related to the discrete Fourier transform, was first developed in

1974 by Ahmed, Natarajan, and Rao [108]. It’s original formulation applies to one-

dimensional signals, but can be extended to the two-dimensional case. The basic

formulas describing the two-dimensional forward (Guv) and inverse (gmn) DCT, assuming

an original signal matrix of size MxN, are given in Equation 8.1 [104].

170

() () () ()

() () () ()
∑ ∑ ⎥⎦

⎤
⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ +

=

∑ ∑ ⎥⎦
⎤

⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ +

=

−

=

−

=

−

=

−

=

1

0

1

0

1

0

1

0

2
12cos

2
12cos2

2
12cos

2
12cos2

M

m

N

n
uvmn

M

m

N

n
mnuv

N
vn

M
umGvcuc

MN
g

N
vn

M
umg

MN
vcucG

ππ

ππ

 (8.1)

where
⎪⎩

⎪
⎨
⎧ ==

otherwise 1

0k if
2

1
c(k)

In principal, the DCT can be computed for an entire image in a single

pass. However, all practical implementations involve processing the image as a series of

square subarrays, most commonly blocks of 8x8 pixels. Studies have found that larger

subarrays generally do not show better data compression performance, as the correlation

among neighboring pixels is typically limited to small regions of the image [104]. Since

the variables m, n, u, and v in Equation 8.1 can only take on integer values, the cosine

terms can be precomputed and stored in lookup tables. Smaller block sizes allow

compact lookup tables for storing these constants and smaller memories for storing

subarray elements during the computation.

Figure 8.8 shows the 64 basis functions that comprise the DCT calculation

for the 8x8 case. Each sub-image corresponds to a single element of the transformed

domain block. If the transformed domain coefficients are specified with sufficient

accuracy, any 8x8 block of pixels in the image domain can be reconstructed from some

combination of these basis functions. It is important to note that the DCT calculation

does not by itself provide data compression. Rather, compression is achieved through

quantization and/or removal of components from the transformed domain. Numerous

quantization and data coding techniques, often involving adaptive algorithms, have

evolved for compressing the transformed image representation with minimal distortion of

the restored images [104]. For example, in many cases the coefficients corresponding to

high spatial frequencies can be discarded with virtually no perceptible degradation in the

image.

171

Figure 8.8 Basis Functions for 8x8 DCT

b. Measuring Image Quality

Assessing image quality is inherently subjective. Rao notes that the

human viewer “is the ultimate judge regarding the quality of the processed images.”

[104] Nonetheless, various quantitative measures are commonly used to assess image

quality. These metrics allow objective comparison of different image processing

methods. Furthermore, in applications such as medical diagnostics, images that “look

good” to human observers may actually be inferior if they are processed in such a way

that critical information is lost.

Two of the most common image quality metrics used in the literature are

mean squared error (MSE) and peak signal-to-noise ratio (PSNR). These metrics are

defined in Equation 8.2. They both quantify how “noisy” a reconstructed (and possibly

corrupted) image is compared to the original image.

() ()[]

() pixelper bits wherelog10

,ˆ,1

2

10

1

0

1

0

2

12
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∑ ∑ −=

−

−

=

−

=

BPSNR

nmgnmg
MN

MSE

MSE

B

M

m

N

n

 (8.2)

172

c. MATLAB Testbed
A MATLAB simulation testbed was developed to examine the quality of

DCT-based image compression under various levels of numerical precision and error

rates (see Appendix B). The “signal processing” toolbox within MATLAB includes the

DCT and inverse-DCT (IDCT) functions. For the purposes of this testbed, however, it

was necessary to implement the DCT operations directly rather than use the built-in

functions. This permitted manipulation of numerical precision over small regions of

individual images and at specific places in the DCT computation sequence.

For a satellite imaging application, only the forward DCT processing is

performed on-board and therefore susceptible to errors. Image reconstruction with the

IDCT is performed on the ground and assumed to be error-free. The DCT algorithm was

modified to allow manipulation of the numerical precision and accuracy of the DCT

coefficients. Complete processor failure, as might occur in unprotected TMR or RPR

voter circuitry, is modeled with a random number generator. In this situation the

coefficients produced by the circuit can take on any value between +/- N*(2B-1), where B

is the number of bits per pixel and (2B-1) is the largest possible pixel intensity.

Imprecision is modeled by discretizing and rounding properly calculated DCT

coefficients.

In addition, fault persistence was modeled by considering the time

required for partial and/or full FPGA reconfiguration. Data from the CFTP flight

experiment hardware suggest full device reconfigurations take approximately 70 msec

and single-frame partial reconfigurations require roughly 24 µsec. These time durations

were converted into the number of sequential pixels flowing through the processor until

potential faults can be corrected. For this scenario with a 512x512 pixel imager operating

continuously at 1 Hz, 8 pixels are processed in the time it takes to refresh a single

configuration frame on the FPGA and 18,000 pixels are processed during a full device

reconfiguration. In either case, if on-chip error detection is available, only a small

portion of a single frame will be corrupted before the system is restored. For larger

images and/or faster frame rates, the throughput would necessarily be higher and more

pixels would be corrupted before the device could recover from error-producing SEUs.

173

These fault models provide information regarding the potential

consequences of SEUs in FPGA-based DCT processing. However, they are not based on

any particular design implementation. More sophisticated fault and algorithm models can

be easily integrated into this preliminary testbed to investigate the performance of

specific designs. When building circuits for real-world implementation, one could use

the actual design architecture(s) to more precisely model the SEU response of the image

processing system. In addition, once the design matures enough for testing on real

circuits, the SEU simulator from Chapter VI could be used in conjunction with the

MATLAB testbed to improve these predictions.

3. Effect of Imprecision on Image Quality
This scenario was designed to determine whether imprecise computations from an

SEU-affected RPR design cause noticeable and/or unacceptable results. In addition, it

illustrates the impact of SEUs that defeat a circuit’s fault tolerant capabilities (TMR,

RPR, or otherwise). A TMR design may have less frequent failures than an RPR version,

but TMR failures have greater likelihood of causing gross miscalculations. Furthermore,

the TMR failures may persist for a longer duration since the larger circuit takes more

time to reconfigure. During the fault repair time, the processor will continue to provide

erroneous results, degrading a larger region of the image.

The first example examines what happens when circuit failure causes the

calculation to produce random DCT coefficients. Figure 8.9 shows the before and after

images for such a fault persisting for 70 msec and affecting the calculation of over 18,000

coefficients, or about 7% of the total pixels. As expected, the image recreated upon

inverse transforming these random coefficients is completely corrupted in the regions that

were processed while the fault persisted. For a system performing continuous

configuration readbacks and/or scrubbing on the FPGA device, this example can be

considered a worst case since 70 msec is the longest duration that an SEU would persist.

For systems with less frequent readback/scrubbing or systems that don’t include on-board

fault detection/correction, it is possible for SEU-induced faults to spoil entire images or

sequences of images.

174

Original Image

Restored Image

Figure 8.9 “Baboon” Image with Temporary Failure of DCT Processor

175

The next example looks at the effect from imprecise coefficient calculations over

the same 70 msec fault duration. Again, roughly 7% of the pixels are affected. In this

case each DCT coefficient in the error zone is approximated by an 8-bit number,

compared to the 32-bit representation of coefficients outside the error zone. A sample

run comparing the fault-free and faulty images is shown in Figure 8.11. The corruption is

virtually undetectable to the casual observer. Figure 8.10 shows the difference between

the two images, identifying a horizontal band of distortion in the upper portion of the

image. Careful examination of Figure 8.11 reveals some blurring, especially in the

central region of trees. This region is expanded in Figure 8.12. Nonetheless, for most

applications such minimal degradation is acceptable.

Image Difference (Original-Restored)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 8.10 “Gold Hill” Difference Image

176

Original Image

Restored Image

Figure 8.11 “Gold Hill” Image with Temporary Imprecision in DCT Processor

177

Original Image

Restored Image

Figure 8.12 Detail of “Gold Hill” Image with Temporary Imprecision in DCT Processor

178

To further demonstrate the inherent robustness of this image processing scenario,

the final example shows what would happen if an entire image was processed with

reduced precision. This would be useful information when determining the appropriate

level of detail for the full precision modules in TMR and RPR structures. Furthermore,

various factors may cause SEU-induced imprecision in an RPR design to persist over

more than the ~18,000 pixels assumed in the previous examples. For example, if the

camera system were to operate at standard video rates of 30 frames per second instead of

the 1 Hz rate assumed in this scenario, 70 msec of error persistence would translate into

550,000 pixels, or more than two entire images. As Figure 8.13 shows, at this level of

imprecision the image is beginning to appear somewhat “blocky,” although overall the

degradation is slight. Figure 8.14 shows a more detailed view, demonstrating the blurring

that occurs when 32-bit coefficients are approximated by 8-bit values.

179

Original Image

Restored Image

Figure 8.13 “Lena” Image with Persistent Imprecision in DCT Processor

180

Original Image

Restored Image

Figure 8.14 Detail of “Lena” Image with Persistent Imprecision in DCT Processor

181

In addition to subjectively judging the preceding images, one can use the image

quality metrics from Equation 8.2. Table 8.4 lists the mean squared error and peak SNR

metrics for the three examples described above. The left column of data, labeled “Fault-

Free,” is created by performing a 32-bit DCT calculation, followed immediately by the

IDCT operation. The right column of data corresponds to the hypothetical fault

conditions described for each example. Although these mathematical metrics indicate

considerable distortion between the fault-free and faulty images, only the “Baboon”

example appears obviously corrupted to the average viewer. Distortion in the two

examples of imprecision are practically indistinguishable to human observers viewing

these images through typical media (hardcopy and computer display).

 Fault-Free Faulty
 MSE PSNR MSE PSNR

“Baboon” 3.52*10-13 172.7 dB 1,581 16.1 dB
“Gold Hill” 3.54*10-13 172.6 dB 2.07 45.0 dB

“Lena” 3.54*10-13 172.6 dB 26.7 33.9 dB

Table 8.4 Image Metrics for Figure 8.9-Figure 8.13

As this section demonstrates, RPR is a viable option for many image processing

applications. The simulation process developed above serves as a practical example of

how one can investigate the performance of an RPR architecture in an SEU environment.

By modeling a system and the potential faults that might affect it, one can better

understand the consequences of particular fault-tolerant approaches. The examples above

were based on simple models of a DCT processor. As a design matures, more detailed

models can be developed to improve the accuracy of such studies. Using this process

even in the preliminary design stages allows one to make informed decisions about how

best to achieve fault tolerance.

4. Affect on Total Performance Metric (TPM)
The previous section demonstrated that image processing tasks are often fairly

robust in handling numerical imprecision. It was shown both qualitatively and

182

quantitatively that the risk of imprecision due to an RPR architecture is minimal. While

Figure 8.9 showed that incorrect data can dramatically corrupt images, Figure 8.11-

Figure 8.14 showed that even significant loss of numerical precision (e.g., from 32-bit to

8-bit precision) causes only slight distortion. This information is vital to determining a

system’s total performance metric (TPM).

As described in Chapter IV, the TPM process is useful for guiding system

development based on quantitative measures of cost and benefit factors, and scaling

factors to relate these diverse metrics. For the problems addressed in this dissertation, the

TPM factors include size, speed, power, reliability, and precision. The goal of TPM is to

determine the optimal design solution that maximizes the function:

 ∑−∑=−=
costs

j

benefits

i

N

j
jC

N

i
iB CKBKCostBenefitTPM (8.3)

The scaling factors K that appear in the equation above represent the relative

importance of each cost and benefit term. Based on the results from the previous section,

it is clear that Kreliablitity should be larger than Kprecision, since failure of the image

compression algorithm has much more severe consequences than reduced-precision data.

This conclusion is, of course, scenario-dependent. For applications such as video

broadcasts of entertainment content or satellite imaging for broad-area land surveys, it is

safe to assume that the precision factor is much less important than reliability. On the

other hand, applications such as astronomical imaging with the Hubble Space Telescope

may be much less tolerant of images corrupted by imprecise data. The following

discussion addresses situations in which the precision is less important than reliability.

Example 2 from Chapter IV considered the TPM for a notional satellite image

processor. The assumptions made about the reliability and precision terms in Chapter IV

can be improved by using simulation tools such as those used in the previous section for

demonstrating the effects of data errors and imprecision. Figure 8.15 shows the behavior

of these two TPM factors based on results from the previous section. Referring to the

right frame in the figure, note that there is minimal loss of “benefit” as precision is

reduced from the design specification value of 16 bits to 10 bits. Similarly, there is no

benefit to increasing the precision above 16 bits. There is, however, a critical point

where the precision factor drops off quickly, since image reconstruction using extremely

183

coarse data is nearly the same as using incorrect data. Experimentation with the images

used earlier in this chapter, showed that this transition region occurs between 5 and 10

bits. At 5 bits of precision or lower, the images were almost indecipherable and therefore

provide essentially no benefit. On the other hand, at 10 bits of precision the image

degradation was barely perceptible and certainly not significant for entertainment and

similar purposes. The circle on the graph marks the point where 11 bits of precision

provides 95% of the maximum precision benefit value. Sample images processed at this

precision level yielded a peak SNR (PSNR) value of approximately 45 dB.

min 12 hr 2 day 4 day 1 wk
-1.5

-1

-0.5

0

0.5

1
Reliability Benefit Value

5 bits 10 bits 16 bits 24 bits
-2

-1.5

-1

-0.5

0

0.5

1
Precision Benefit Value

Figure 8.15 Benefit Value Functions for Reliability and Precision Factors

The reliability term shown in the left frame exhibits a similar roll-off at lower

reliability values and an plateau region for higher values. The x-axis is measured by

mean time between error (MTBE), where an error corrupts one entire image frame.

Based on this definition of reliability, it is assumed that one or more bad images every

minute is unacceptable, thus the benefit value for a one minute MTBE is zero.

Considering a video entertainment application, one error every hour is presumably

noticeable, but not catastrophic. Therefore, this MTBE provides about half the desired

reliability value. At the upper extreme, an MTBE of two days or longer provides nearly

the maximum reliability benefit. MTBE can be converted into an average pixel error

rate, and vice versa. The example in Chapter IV describes a system with a 512x512 pixel

camera that operates at 1 frame per second, or 86,400 frames per day. To achieve the

same PSNR level of 45 dB as discussed earlier, each 512x512 image must have only 14

184

pixel errors. This translates into 4.6 bad images per day, or an MTBE of 5.2 hours. This

point is marked on the graph by a red circle.

By combining the data in these two graphs, one can determine the proper ratio

between Kreliablitity and Kprecision. For this example, this can be accomplished by scaling the

two functions such that the PSNR=45 dB points coincide. Figure 8.16 shows this

combined plot. The intersection of these two curves occurs at Precision=11 bits and

MTBE=5.2 hours. From these curves it is determined that the asymptotic benefit value

for reliability (MTBE) is 3.3 times that of precision. Thus the K factors should be set

such that Kreliablitity = 3.3×Kprecision.

[5] <5 hr> [16] [24] <2 day> <3 day>
-0.5

0

0.5

1

1.5

2

2.5

3

3.5
TPM Benefit Value

[Bits] <MTBE>

MTBE
Precision

Figure 8.16 Relationship Between Precision and Reliability TPM Factors

Example 2 from Chapter IV also considered power, area, throughput and latency.

Throughput was determined to be the single most important factor in that example,

whereas power, area and latency were much less significant. Therefore the next step in

185

the TPM process is to develop an analysis technique for relating throughput to reliability

and/or precision. One possible approach is to use surveys and controlled experiments of

human viewer reactions to varying video rates (throughput) as compared to different

levels of picture clarity (precision) and pixel or frame errors (reliability). This would

yield the TPM curve for throughput and would reveal the relative importance (K factors)

among these three metrics. Using the TPM curves and scaling factors for these three

most important parameters allows one to determine an optimal solution that best

combines speed, accuracy and reliability. Similar analysis can be carried out for the other

TPM factors applicable for a given application. As size, power, latency or other

parameters increase in importance, they can also be integrated into the TPM.

This example highlights that both subjective and objective criteria are often

needed to relate the various TPM factors. For example, while mathematical image

quality metrics such as PSNR are useful, determining the “annoyance threshold” for bad

images during video entertainment broadcasts is very subjective. Nonetheless, especially

in image processing applications, these subjective measures are often more important

from a system-level perspective. TPM provides a simple way to integrate both

qualitative and quantitative measurements of each design parameter. Armed with the

information generated by the TPM process, a system engineer can decide which design

solution best achieves all of the design goals.

186

THIS PAGE INTENTIONALLY LEFT BLANK

187

IX. CONCLUSION

A. SUMMARY OF RESEARCH
This research investigated methods of building and testing flexible, reliable and

efficient spacecraft computer systems. Recent advances in FPGA technology make these

devices well-poised to become key components in future satellites that will likely require

flexible high-performance computing systems. Spacecraft computers must not only meet

strict size, weight and power constraints, but also operate reliably in harsh radiation

environments. The major reliability concern addressed in this research is the effect of

radiation-induced SEUs on FPGA circuits. While traditional approaches to fault

tolerance assume reliability is the preeminent concern, this research highlights the

multitude of issues that a spacecraft engineer must address. Specifically, power

consumption is identified as a critical resource that must be carefully balanced against

reliability goals when designing spacecraft computers.

A major focus of this research was developing the RPR architecture as an

efficient means of achieving fault tolerance for FPGAs. RPR is an alternative to the more

common TMR method that has long been used to protect systems against SEUs. RPR’s

primary advantages include reduced area requirements and power usage. Certain

computational problems, such as the primitive logic operations of AND, XOR, etc.,

cannot be formulated in terms of approximate calculations and are not amenable to RPR.

These were labeled Class B problems, in contrast to Class A problems, which can be used

in an RPR architecture. Since most numerical functions and physical systems have some

tolerance for imprecision and/or noise, RPR has broad applicability in real-world

systems.

The concept of a total performance metric (TPM) was introduced to evaluate the

relative merit of RPR and other approaches such as TMR. TPM takes into account the

importance of various design parameters and aids the system engineer in determining the

optimal solution to a given problem. The methodology for developing this TPM can

easily be tailored for use in various design scenarios. The main concept in the TPM

approach is that each design parameter can be expressed as either a cost or benefit

188

function and related to other parameters by means of simple scaling factors. Several

notional examples were developed in which power, fault tolerance, and other factors were

integrated via TPM to identify the best solution. Although the behavior and relationships

among the TPM terms vary between applications, this methodology is a powerful tool for

improving the system design process. TPM factors related to image quality were

examined in detail for a specific image processing algorithm to demonstrate the real-

world applications of TPM.

Several CORDIC designs for calculating sine and cosine functions were used as

test cases for detailed investigations of the SEU tolerance and power consumption in

actual FPGA devices. CORDIC was chosen as a good example of a moderately complex

function fitting the description of a Class A algorithm appropriate for RPR. The circuits

were implemented on the Xilinx Virtex XQVR600 FPGAs contained in the CFTP

experiment. In addition, some CORDIC designs were used in radiation testing of a

prototype Virtex-II board that included an XC2V6000 device.

TMR and RPR versions of these CORDIC circuits were evaluated through SEU

simulations at NPS and proton radiation testing conducted at UC Davis’ Crocker Nuclear

Laboratory. Although radiation testing did not provide comprehensive characterization

of these two fault tolerant approaches, it yielded valuable data for validating the custom-

built CFTP SEU simulator. In addition, radiation testing demonstrated that the SEU

detection and correction techniques of the CFTP experiment were functional and ready

for space flight. Hundreds of SEUs were detected by the automatic FPGA configuration

checking circuitry on the CFTP board. The SEUs identified during several hours of

radiation testing are equivalent to the number of SEUs expected in roughly one year of

normal radiation conditions for the CFTP space experiment.

The SEU simulator provided a means of comprehensively evaluating individual

FPGA designs by exhaustively testing the SEU susceptibility of every configuration bit

on the chip. Extensive testing was conducted with TMR, RPR and unprotected CORDIC

circuits. The data demonstrated that the RPR approach provides fault tolerance

comparable to that of TMR. The RPR and TMR designs had residual SEU sensitivities

of 0.45-1.94% and 0.34-0.89% probability of SEU-induced output data error,

189

respectively. Overall, TMR was roughly twice as effective as RPR in preventing SEU-

induced data errors, which was expected due to TMR’s more comprehensive redundancy

structure. RPR was most effective in protecting the most significant bits in a circuit’s

output, which for these test circuits were the 8 MSBs. Errors in the 8 MSBs of the RPR

circuits were about as likely as errors anywhere in the output data word of the TMR

circuits. Thus, RPR is an effective method of protecting against configuration bit SEUs.

Power simulations were conducted to quantify the power savings of RPR

compared to the TMR architecture. Using commercial software tools (ModelSim and

XPower) and established procedures, static and dynamic power consumption were

determined for the same circuits used for SEU testing. RPR required less than 5% more

power than the unprotected circuits. The TMR circuits used about twice as much power

as the RPR circuits. Therefore, RPR offers dramatic improvement in power usage over

the traditional TMR approach. Coupled with the SEU simulation data, this power data

demonstrates that RPR is an effective and efficient fault tolerant method. There is a

trade-off between fault tolerance and power consumption, as expected. For applications

in which slight numerical inaccuracies are acceptable or power is a significant constraint,

the RPR architecture is a superior choice.

Finally, the dissertation concluded by examining RPR’s performance, in terms of

data quality, when applied to an image compression algorithm. The discrete cosine

transform (DCT) used in many signal processing applications, such as the JPEG and

MPEG standards, was implemented into a MATLAB testbed to demonstrate various SEU

fault effects. For this practical example, inexact solutions due to SEUs in an RPR design

cause only minor degradation in image quality. This demonstrates that in some

applications occasional lower-precision results from RPR are quite acceptable, especially

considering the power and area savings compared to TMR.

B. ORIGINAL CONTRIBUTIONS
The primary contribution of this dissertation is the development of RPR as a

viable method of achieving fault tolerance in FPGAs. Though similar in nature to error

mitigation strategies used in other fields, this research is the first work applying such

190

methods to FPGA circuits. It is a unique hardware fault-tolerant structure that applies

concepts used in certain software designs. RPR shares some features with the typical

TMR fault tolerant approach, such as spatial redundancy and voting of output data

values. However, it differs fundamentally in that it recognizes that the individual output

data bits from a numerical computation differ in importance. RPR protects only the most

important data bits by establishing upper and lower error bounds to guard against faults in

the full-precision computation module. This unique approach prevents numerically large

data errors from propagating through the system.

This research shows how the RPR architecture can be applied to real-world

problems to reduce the cost of hardware fault tolerance. RPR was implemented in FPGA

circuits based on the well-known CORDIC algorithm. These test circuits demonstrated

the advantages of RPR in terms of size and power, as well as its effectiveness in fault

mitigation. Computational tasks were categorized as either Class A or Class B according

to whether RPR might be appropriate in a given situation. By following the process

described in the flowchart of Figure 2.12, one can quickly assess whether a particular

problem is a candidate for RPR. Furthermore, it is important to stress that RPR is also

quite suitable for non-FPGA systems. Though the focus in this research was on FPGA-

based spacecraft computers, many of the concerns addressed here are equally valid for

custom ASIC and other circuit technologies.

The second contribution of this research is the development of a total performance

metric (TPM) as a means of determining the best overall solution to a given problem

based on numerous performance criteria. TPM is a quantitative tool that integrates

benefit factors (speed, reliability, etc.) and cost factors (power, size, etc.) into a single

metric. While these benefit/cost factors and their relative weightings must be customized

for each individual situation, TPM enforces a structured process for quantifying factors

important to a given design. A key observation is that reliability should be considered as

one of many possible important design considerations. TPM is useful for comparing

various fault-tolerant techniques since it accounts for the different strengths and

weaknesses of each approach. An essential feature of the TPM methodology is the

flexibility that allows it to be adapted to most any design situation, not just fault-tolerant

FPGA computing.

191

This dissertation’s third main contribution is the development of the CFTP SEU

simulation system. Building upon hardware and software tools developed at NPS for the

CFTP program, a comprehensive method was created and validated for testing the SEU

tolerance of FPGA circuit configurations. The completion of this SEU simulator is a

major contribution, as it allows comprehensive ground-based testing for predicting on-

orbit performance of CFTP experiments. The simulator also provides a means of

replicating and studying the effects of SEUs reported by the CFTP flight experiments,

once the NPSat-1 and MidSTAR-1 satellites are launched in late-2006. In addition, this

SEU simulator enables detailed studies of the effectiveness of various fault-tolerant

approaches, as demonstrated in this research.

Although other institutions have built similar systems for simulating SEU effects

on FPGAs [8], [99], [109], this simulator is unique because it uses an actual spaceflight

hardware configuration. The SEU simulators described elsewhere in the literature are

based on custom setups not used directly in any space experiments. Though working

with the CFTP flight hardware presents some challenges, for example limited I/O

interconnectivity, it offers several advantages. First, the FPGA configuration files tested

in the simulator are identical to those that can be run on CFTP during space operations.

This provides the most accurate assessment of SEU sensitivities and allows ground-based

verification of faults that are observed on-orbit for specific circuit configurations.

Second, data from the simulator not only provides valuable reliability predictions, but

also serves as excellent testing of the CFTP equipment’s readiness for space operations.

Finally, the capability of artificially injecting faults into the CFTP hardware offers an

alternative means of exercising fault-tolerant designs during space operations. Since the

expected SEU rates in the NPSat-1 and MidSTAR-1 orbits are quite low, it may be

worthwhile to accelerate the CFTP experiments by using this fault injection tool.

C. FUTURE WORK
Part of the outcome from this research is recommending areas for further

investigation. Several of these topics are related to better understanding and mitigating

SEU effects. Additionally, some of the FPGA power consumption issues explored in this

dissertation are good candidates for further exploration.

192

The first recommendation is to conduct more extensive radiation testing with the

CFTP hardware. The testing described in Chapter VII proved useful, especially in

validating the SEU simulator. However, additional testing could be used to investigate

the surprisingly high SEU sensitivities discussed in Chapter VI. Although the radiation

testing and simulator data matched for nearly 200 unique SEUs, only two CORDIC

circuits were tested in the radiation chamber. It would useful to test the other circuits

used in the simulator, as well as new TMR and RPR circuit designs that follow Xilinx’s

recommended I/O and voter methods. Additional testing should also include circuits that

incorporate half-latch removal methods developed at LANL and BYU. As their research

has shown, this is important for avoiding undetectable SEU susceptibilities.

Further radiation testing would also be useful for exploring the unexpected SEU

polarity behavior found here. As discussed in Chapter VII, it is possible that in the Virtex

FPGA architecture SEUs are more likely to cause 1-to-0 configuration bit upsets,

whereas the Virtex-II may be more susceptible to 0-to-1 transitions. If these preliminary

conclusions are confirmed, one might pursue methods of developing bitstreams with

higher percentages of the less-susceptible bit polarity as a novel way of improving FPGA

reliability.

Another area for future work is analyzing data from on-orbit testing with CFTP

experiments. Once the NPSat-1 and MidSTAR-1 satellites are launched, the CFTP team

will have access to valuable real-world SEU data. This data should be used to verify

results from radiation testing and the SEU simulator. While it is expected that the

spacecraft data will match ground testing, any differences found will be important for

improving these predictive tools. An additional tool that would enhance these SEU

studies is a means of determining the precise circuit function of each configuration bit on

the FPGA. This information would enable detailed analysis of how individual SEUs

cause logic errors to propagate through a circuit. Other researchers have published

results based on this type of analysis, but the actual bit-to-function mappings have not

been published.

With minor modifications, the SEU simulator built for this research could be used

with the Virtex-II board that was used during part of the radiation testing. This would be

193

useful for comparing radiation data from Nov 2005 and any future tests. A Virtex-II SEU

simulator would allow testing of larger and more complex circuits that might exceed the

capacity of the baseline XQVR600 device on CFTP. For example, the “PIX” circuit

tested at UC Davis was built under the CFTP project as a distributed-TMR experiment,

but its large size meant that it could only be used on the Virtex-II prototype board.

Further theoretical work would be useful for building a stronger foundation for

determining whether algorithms are Class A or Class B. While this research focused

specifically on numerical computations, it would be worthwhile to determine if and when

RPR can be applied to functions without an obvious hierarchy of importance in output

data bits. Functions, such as Hamming distance comparators, that produce a single

output bit may even be Class A if simplified approximate solutions can be developed,

perhaps by ignoring portions of the input data. One might also search for the most

primitive Class A function. Is the most basic reducible function a numerical operation,

such as addition, or can other operations with even simpler input/output relationships be

approximated?

In this research, power estimates were made using only computer simulations.

Future research might involve measuring power consumption on actual FPGA devices.

Accurate power measurements could verify the conclusions stated here showing that RPR

used only half as much power as TMR for the CORDIC circuits tested. A major

challenge of this approach is properly compensating for the power usage of ancillary

components on the CFTP board. Such work might also require modifications to the

CFTP circuit board(s) and/or power supply setup. Despite these challenges, power

measurements would help validate the power simulation methods used in this research

and improve future studies of power-efficient fault-tolerant designs.

Finally, although RPR was shown to be significantly more power efficient than

TMR, additional power-saving techniques could be explored. Chapter III explains that in

current FPGA technologies these techniques generally focus on the dynamic power

equation. The literature contains many unique approaches to reducing power. Future

work might involve applying some of these techniques to fault-tolerant designs. For

194

example, as Chapter VI demonstrates, pipelined CORDIC circuits use substantially less

power on a per-calculation basis than the iterative CORDIC implementations.

D. CONCLUDING REMARKS
This research has culminated in a set of tools for evaluating several important

characteristics of FPGA-based spacecraft computing systems. The automated SEU

simulator enables exhaustive testing of a specific architecture’s fault tolerance, and hence

reliability, even in the preliminary stages of system development. Data from the SEU

simulator can be integrated into modeling environments, such as the MATLAB testbed

for the DCT image compression example, to provide visual and statistical evidence of

how a system is likely to respond to SEU-induced faults within the FPGA circuits.

Power estimates can be made using simulation software to assess the efficiency of

various designs. The TPM method of evaluation ties these tools together by considering

all important characteristics of competing designs and weighing them appropriately for a

given task. The utility of this evaluation method extends well beyond the scope of the

fault tolerance research conducted for this study.

Through the methodologies mentioned above, this dissertation clearly

demonstrates the utility of a reduced precision redundancy architecture for fault tolerance

in FPGAs and other technologies. Though much of this research focused on CORDIC

test circuits, the RPR approach can easily be applied to many different FPGA and non-

FPGA circuits. Many computational tasks for both orbital and terrestrial applications are

amenable to “flexible precision.” Flexible precision allows for area and power savings

through the use of smaller, more efficient circuits. RPR takes advantage of this

efficiency while providing fault protection comparable to the standard TMR method.

195

APPENDIX A – CORDIC PROCESSOR DESIGN

As discussed in Chapter V, a CORDIC processor was the primary test case for the

fault-tolerant and power-saving techniques developed in this research. Various

implementations of a basic CORDIC trigonometric calculator were constructed to

provide insight into the complex interactions between a circuit’s size, speed, complexity,

feedback structure, power consumption and fault tolerance. This appendix describes the

design methodology for producing the circuits tested and analyzed in Chapters VI and

VII.

A. OVERVIEW
The basic CORDIC circuit tested follows the iterative design presented in

Parhami [30] and uses simple adder/subtracter and shifter elements. Using the circular

rotation mode, this circuit produces the sine and cosine of the input angle after

performing a series of intermediate calculations. The fundamental CORDIC equations

from Chapter V are repeated here. As explained in [30], initializing the registers with the

values (0.60725, 0, <input angle>) configures the circuit for calculating cosine and sine.

() sign
2tan

2
2

1
1

1

1

ii

i
iii

i
iiii

i
iiii

XYY
YXX

λξ
ξλλ
ξ

ξ

=
−=

+=

−=

−−
+

−
+

−
+

⎪
⎩

⎪
⎨

⎧

=
=

==

angleinput
0

60725.01

with

0

0

0

λ
Y

KX
 (A.1)

The baseline design was a 32-bit processor. A two’s complement fixed-point

number system was established to accommodate the desired range of inputs [-π/2, π/2]

and outputs [-1, 1]. For input angles outside this range, a pre-rotation operation could be

added as in [34], though this was not implemented in this design. Angles are represented

in units of radians, though any convenient angular units could be chosen if the arctangent

look-up table is modified appropriately. Using radians simplified the interpretation of

results.

196

The circuit’s inputs and outputs provide for 32-bit resolution, of which 30 bits are

devoted to the fractional part. This provides sine and cosine values accurate to within

±2-31, or ±4.66*10-10. The internal calculations are performed on 39-bit operands. This

wider internal datapath accounts for rounding/truncation errors. In order to achieve n-bit

precision in the output values, the authors in [34] state that the internal wordwidth must

be (n + log n + 2), although they do not provide a derivation of this formula. A

derivation is found in [110], where an upper-bound error analysis was performed

including both approximation and truncation errors. As mentioned above, all numbers

are represented in two’s complement notation and angle values are expressed in radians.

The table below shows the fixed-point formats used for the baseline 32-bit CORDIC

design.

Bit # 31 30 29 28 27 … 1 0 Inputs &
Outputs Value -21 20 2-1 2-2 2-3 … 2-29 2-30

Bit # 38 37 36 35 34 … 8 7 … 1 0
Internal

Value -21 20 2-1 2-2 2-3 … 2-29 2-30 … 2-36 2-37

Table A.1 Fixed-Point Two’s Complement Number Formats for 32-Bit CORDIC

Kota’s derivation [110] defines numerical precision as the number of fractional

bits (i.e., number of digits to the right of the binary point). They account for the sign and

20 bits in the term “+ 2” in the equation above. Thus 37 bits are sufficient for 32-bit

resolution. This is supported by the simulation results in [94], where precision greater

than 30 fractional bits can be achieved with 36 or 37 total bits when 33 iterations are

performed. Hu did not show results for a 32 iteration design as used here, but

extrapolation from his tables indicates that 32 iterations are sufficient. The 39-bit design

detailed above is therefore over-designed for the desired accuracy. However, since all of

the radiation test data (see Chapter VII) was collected with the original 39-bit version,

this internal datapath width was used for all 32-bit CORDIC circuits in this research.

197

B. DESIGN PROCESS

1. Schematic Design Specification

The designs used in the Aug and Nov 2005 radiation experiments were built using

Xilinx ISE 6.2 and 6.3. The majority of the design was created using the schematic entry

tool ECS. The ROM look-up tables were VHDL modules, while all other modules were

specified schematically down to the individual logic element level (e.g., AND, OR,

MUX, FF, etc.). The top-level schematic file for the 32-bit CORDIC processor is shown

in Figure A.1.

Figure A.1 32-Bit CORDIC Processor Schematic

This basic processor module was integrated into the overall FPGA design used on

the CFTP board X2 experiment device. For example, in the TMR experiments this

module was triplicated within X2’s top-level VHDL code with simple component

declarations. The top-level code included a voter unit, a counter for automatically

generating input values and several control signals. As described in [103], the X1 device

198

provides control and interface for the experiments loaded onto X2. The basic CORDIC

processor was small enough to load a copy into the X1 design for synchronous error

detection of the results produced by X2. It should be noted that in this research TMR was

applied only to the main data processing blocks. This follows the approach taken in [85]

in which “the ‘full TMR’ … does not triplicate the clock, reset and I/O signals.” By

contrast, the methods recommended by Xilinx [68] and other researchers [8], [88] involve

separate clock and I/O signals for each of the three TMR computation modules.

However, these more complete TMR methods are not always feasible due to I/O and

clock network limitations. For example, as discussed in Chapter VI, the CFTP board

does not support I/O triplication of a 32-bit output vector.

For the Aug 2005 experiments the design was instantiated onto the CFTP

development board’s Xilinx Virtex XQVR600 FPGAs. For the Nov 2005 experiments a

few small modifications were made to the original design and the new version was tested

on both CFTP development boards, using the Virtex XQVR600 and Virtex-II XC2V6000

FPGAs. The Xilinx ISE development tools, including the XST synthesis tool, were used

throughout the process. The only design constraints levied on the tools were the physical

pin locations necessary to interface the circuit with the CFTP boards. Otherwise, the

tools automatically optimized the design to remove redundant logic and improve the

circuit’s speed. No attempt was made to avoid potential “half-latch” or “keeper circuit”

problems, as identified in [7], [8]. This simplified the design flow, but allowed some

potential for undiagnosable faults. As pointed out in the literature, half-latches present a

sizeable cross section in the Virtex devices. However, recent investigations with the

Virtex-II device family show fewer problems from half-latches.

Once each circuit was thoroughly simulated and tested for functional correctness,

a “golden” version of the fully placed-and-routed design was archived. Changes to the

circuit are manifested as changes to the configuration bitstream, therefore accurate

analysis of faults requires exact knowledge of the circuit-to-bitstream mapping. Since

even the smallest design change can significantly change the placed-and-routed circuit, it

was critical to not modify this golden design between radiation testing, fault injection

simulations, and analysis. One of the designs tested in Aug and Nov 2005 was a TMR

version of the 32-bit CORDIC. Figure A.2 below shows how the design from Aug 2005

199

was implemented on the Virtex device (image generated by Xilinx’s FPGA Editor

software). Though this design appears quite dense, it uses only 19% of the total slices on

the chip.

Figure A.2 Layout of TMR 32-Bit CORDIC on Virtex XQVR600

2. VHDL Design Specification for Iterative CORDIC
Following the Nov 2005 radiation tests, the design was translated into a VHDL

representation. This provided more flexibility and simplified the development process.

For example, changing the number of bits of precision in the schematic design requires

painstaking effort, but can be rapidly implemented in VHDL with only minor

modifications. Also, whereas the schematic design consisted of numerous files that had

to interface correctly with one another, the VHDL design was built as a single file that

could be easily ported between machines and software environments. The code listed

below is functionally equivalent to the 32-bit schematic design described earlier.

200

-- Josh Snodgrass
-- 32-bit CORDIC processor
-- Iterative design:
-- 32-bit precision
-- 39-bit internal word length = 32 + log2(32) + 2
-- 35 cycle latency = 3 start + 32 iterations (+ 2 done)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity cordic32sin_cos_iter is
 generic (
 precision : integer := 32;
 wordlength : integer := 39;
 --size_diff : integer := wordlength-precision;
 size_diff : integer := 7;
 iter_max_cnt : integer := 31);
 port (
 clok : in std_logic;
 start : in std_logic;
 z_in : in std_logic_vector (precision-1 downto 0);
 cos_out : out std_logic_vector (precision-1 downto 0);
 sin_out : out std_logic_vector (precision-1 downto 0);
 ang_out : out std_logic_vector (precision-1 downto 0);
 done : out std_logic);
end cordic32sin_cos_iter;

architecture Behavioral of cordic32sin_cos_iter is

 signal x_int : signed (wordlength-1 downto 0);
 signal y_int : signed (wordlength-1 downto 0);
 signal z_int : signed (wordlength-1 downto 0);
 signal cos_int : signed (precision-1 downto 0);
 signal sin_int : signed (precision-1 downto 0);
 signal ang_int : signed (precision-1 downto 0);
 signal state : integer range 0 to 4 := 0;
 signal iteration : integer range 0 to iter_max_cnt;

 CONSTANT x_init : signed (wordlength-1 downto 0) := x"26DD3B6A1" & "000"; -- 1/K
 CONSTANT y_init : signed (wordlength-1 downto 0) := (others => '0');

 type mem_type is array (iter_max_cnt downto 0) of signed(wordlength-1 downto 0);
 signal z_LUT : mem_type;

begin

 cos_out <= std_logic_vector(cos_int);
 sin_out <= std_logic_vector(sin_int);
 ang_out <= std_logic_vector(ang_int);

 z_LUT(0) <= "001100100100001111110110101010001000100";
 z_LUT(1) <= "000111011010110001100111000001010110000";
 z_LUT(2) <= "000011111010110110111010111111001001011";
 z_LUT(3) <= "000001111111010101101110101001101010101";
 z_LUT(4) <= "000000111111111010101011011101101110010";
 z_LUT(5) <= "000000011111111111010101010110111011101";
 z_LUT(6) <= "000000001111111111111010101010101101110";
 z_LUT(7) <= "000000000111111111111111010101010101011";
 z_LUT(8) <= "000000000011111111111111111010101010101";
 z_LUT(9) <= "000000000001111111111111111111010101010";
 z_LUT(10) <= "000000000000111111111111111111111010101";
 z_LUT(11) <= "000000000000011111111111111111111111010";
 z_LUT(12) <= "000000000000001111111111111111111111111";
 z_LUT(13) <= "000000000000000111111111111111111111111";
 z_LUT(14) <= "000000000000000011111111111111111111111";
 z_LUT(15) <= "000000000000000001111111111111111111111";
 z_LUT(16) <= "000000000000000000111111111111111111111";

201

 z_LUT(17) <= "000000000000000000011111111111111111111";
 z_LUT(18) <= "000000000000000000001111111111111111111";
 z_LUT(19) <= "000000000000000000000111111111111111111";
 z_LUT(20) <= "000000000000000000000011111111111111111";
 z_LUT(21) <= "000000000000000000000001111111111111111";
 z_LUT(22) <= "000000000000000000000000111111111111111";
 z_LUT(23) <= "000000000000000000000000011111111111111";
 z_LUT(24) <= "000000000000000000000000001111111111111";
 z_LUT(25) <= "000000000000000000000000000111111111111";
 z_LUT(26) <= "000000000000000000000000000011111111111";
 z_LUT(27) <= "000000000000000000000000000010000000000";
 z_LUT(28) <= "000000000000000000000000000001000000000";
 z_LUT(29) <= "000000000000000000000000000000100000000";
 z_LUT(30) <= "000000000000000000000000000000010000000";
 z_LUT(31) <= "000000000000000000000000000000001000000";

 process (clok,start) begin -- Control signals for state machine
 if (start='1') then
 state <= 1;
 elsif (clok'event and clok='1') then
 if (state = 0) then
 state <= 0;
 elsif (state=3) then
 if (iteration=iter_max_cnt) then
 state <= 4;
 end if;
 elsif (state=4) then
 state <= 0;
 else
 state <= state + 1;
 end if;
 end if;
 end process;

 process (clok,start) begin -- More control signals
 if (start='1') then
 iteration <= 0;
 done <= '0';
 elsif (clok'event and clok='1') then
 if (state=3) then
 if (iteration=iter_max_cnt) then
 iteration <= 0;
 done <= '1';
 else
 iteration <= iteration + 1;
 end if;
 end if;
 end if;
 end process;

 process (clok) begin -- CORDIC computation
 if (clok'event and clok='1') then
 if (state=2) then
 x_int <= x_init;
 y_int <= y_init;
 z_int <= signed(z_in) & "0000000";
 elsif (state=3) then
 if (z_int(wordlength-1)='0') then
 x_int <= x_int - shift_right(y_int,iteration);
 y_int <= y_int + shift_right(x_int,iteration);
 z_int <= z_int - z_LUT(iteration);
 else
 x_int <= x_int + shift_right(y_int,iteration);
 y_int <= y_int - shift_right(x_int,iteration);
 z_int <= z_int + z_LUT(iteration);
 end if;
 end if;
 end if;
 end process;

202

 process (x_int,y_int,z_int) begin -- Rounding of outputs from size "wordlength" to "precision"
 if (x_int(size_diff-1) = '1') then
 if (x_int(size_diff-2 downto 0) /= "000000") then -- Round up
 cos_int <= x_int(wordlength-1 downto size_diff) + 1;
 elsif (x_int(size_diff) = '1') then -- Round to nearest even
 cos_int <= x_int(wordlength-1 downto size_diff) + 1;
 else -- No rounding
 cos_int <= x_int(wordlength-1 downto size_diff);
 end if;
 else -- No rounding
 cos_int <= x_int(wordlength-1 downto wordlength-precision);
 end if;

 if (y_int(size_diff-1) = '1') then
 if (y_int(size_diff-2 downto 0) /= "000000") then -- Round up
 sin_int <= y_int(wordlength-1 downto size_diff) + 1;
 elsif (y_int(size_diff) = '1') then -- Round to nearest even
 sin_int <= y_int(wordlength-1 downto size_diff) + 1;
 else -- No rounding
 sin_int <= y_int(wordlength-1 downto size_diff);
 end if;
 else -- No rounding
 sin_int <= y_int(wordlength-1 downto wordlength-precision);
 end if;

 if (z_int(size_diff-1) = '1') then
 if (z_int(size_diff-2 downto 0) /= "000000") then -- Round up
 ang_int <= z_int(wordlength-1 downto size_diff) + 1;
 elsif (z_int(size_diff) = '1') then -- Round to nearest even
 ang_int <= z_int(wordlength-1 downto size_diff) + 1;
 else -- No rounding
 ang_int <= z_int(wordlength-1 downto size_diff);
 end if;
 else -- No rounding
 ang_int <= z_int(wordlength-1 downto wordlength-precision);
 end if;
 end process;

end Behavioral;

3. VHDL Design Specification for Pipelined CORDIC
In addition, a pipelined version of the CORDIC was built as a VHDL design for

power simulations in Chapter VI. The code listed below provides 32 bits of precision

with 32 clock cycles of latency, but throughput is dramatically improved since results are

produced on every clock cycle. Of course this gain in speed requires increased circuit

area. With this 32-bit design, the Xilinx ISE tools yield a circuit that occupies 2131

slices (30% of total slices) on the XQVR600 part.

-- Josh Snodgrass
-- 32 bit CORDIC processor
-- Pipeline design:
-- 32 bit precision
-- 39 bit internal word length = 32 + log_2(32) + 2
-- 32 cycle latency

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

203

entity cordic32sin_cos_pipe is
 generic (
 precision : integer := 32;
 wordlength : integer := 39;
 --size_diff : integer := wordlength-precision;
 size_diff : integer := 7);
 port (
 clok : in std_logic;
 z_in : in std_logic_vector (precision-1 downto 0);
 cos_out : out std_logic_vector (precision-1 downto 0);
 sin_out : out std_logic_vector (precision-1 downto 0);
 ang_out : out std_logic_vector (precision-1 downto 0));
end cordic32sin_cos_pipe;

architecture Behavioral of cordic32sin_cos_pipe is

 signal cos_int : signed (precision-1 downto 0);
 signal sin_int : signed (precision-1 downto 0);
 signal ang_int : signed (precision-1 downto 0);

 CONSTANT x_init : signed (wordlength-1 downto 0) := x"26DD3B6A1" & "000"; -- 1/K
 CONSTANT y_init : signed (wordlength-1 downto 0) := (others => '0');

 type reg_type is array (0 to precision) of signed(wordlength-1 downto 0);
 signal x_int : reg_type;
 signal y_int : reg_type;
 signal z_int : reg_type;

 type mem_type is array (0 to precision-1) of signed(wordlength-1 downto 0);
 signal z_LUT : mem_type;

begin

 cos_out <= std_logic_vector(cos_int);
 sin_out <= std_logic_vector(sin_int);
 ang_out <= std_logic_vector(ang_int);

 z_LUT(0) <= "001100100100001111110110101010001000100";
 z_LUT(1) <= "000111011010110001100111000001010110000";
 z_LUT(2) <= "000011111010110110111010111111001001011";
 z_LUT(3) <= "000001111111010101101110101001101010101";
 z_LUT(4) <= "000000111111111010101011011101101110010";
 z_LUT(5) <= "000000011111111111010101010110111011101";
 z_LUT(6) <= "000000001111111111111010101010101101110";
 z_LUT(7) <= "000000000111111111111111010101010101011";
 z_LUT(8) <= "000000000011111111111111111010101010101";
 z_LUT(9) <= "000000000001111111111111111111010101010";
 z_LUT(10) <= "000000000000111111111111111111111010101";
 z_LUT(11) <= "000000000000011111111111111111111111010";
 z_LUT(12) <= "000000000000001111111111111111111111111";
 z_LUT(13) <= "000000000000000111111111111111111111111";
 z_LUT(14) <= "000000000000000011111111111111111111111";
 z_LUT(15) <= "000000000000000001111111111111111111111";
 z_LUT(16) <= "000000000000000000111111111111111111111";
 z_LUT(17) <= "000000000000000000011111111111111111111";
 z_LUT(18) <= "000000000000000000001111111111111111111";
 z_LUT(19) <= "000000000000000000000111111111111111111";
 z_LUT(20) <= "000000000000000000000011111111111111111";
 z_LUT(21) <= "000000000000000000000001111111111111111";
 z_LUT(22) <= "000000000000000000000000111111111111111";
 z_LUT(23) <= "000000000000000000000000011111111111111";
 z_LUT(24) <= "000000000000000000000000001111111111111";
 z_LUT(25) <= "000000000000000000000000000111111111111";
 z_LUT(26) <= "000000000000000000000000000011111111111";
 z_LUT(27) <= "000000000000000000000000000010000000000";
 z_LUT(28) <= "000000000000000000000000000001000000000";
 z_LUT(29) <= "000000000000000000000000000000100000000";
 z_LUT(30) <= "000000000000000000000000000000010000000";
 z_LUT(31) <= "000000000000000000000000000000001000000";

204

 process (clok) begin -- CORDIC computation
 if (clok'event and clok='1') then
 x_int(0) <= x_init;
 y_int(0) <= y_init;
 z_int(0) <= signed(z_in) & "0000000";

 for i in 0 to precision-1 loop
 if (z_int(i)(wordlength-1)='0') then
 x_int(i+1) <= x_int(i) - shift_right(y_int(i),i);
 y_int(i+1) <= y_int(i) + shift_right(x_int(i),i);
 z_int(i+1) <= z_int(i) - z_LUT(i);
 else
 x_int(i+1) <= x_int(i) + shift_right(y_int(i),i);
 y_int(i+1) <= y_int(i) - shift_right(x_int(i),i);
 z_int(i+1) <= z_int(i) + z_LUT(i);
 end if;
 end loop;
 end if;
 end process;

 process (x_int(precision),y_int(precision),z_int(precision)) begin
 -- Rounding of outputs from size "wordlength" to "precision"

 if (x_int(precision)(size_diff-1) = '1') then
 if (x_int(precision)(size_diff-2 downto 0) /= "000000") then -- Round up
 cos_int <= x_int(precision)(wordlength-1 downto size_diff) + 1;
 elsif (x_int(precision)(size_diff) = '1') then -- Round to nearest even
 cos_int <= x_int(precision)(wordlength-1 downto size_diff) + 1;
 else -- No rounding
 cos_int <= x_int(precision)(wordlength-1 downto size_diff);
 end if;
 else -- No rounding
 cos_int <= x_int(precision)(wordlength-1 downto wordlength-precision);
 end if;

 if (y_int(precision)(size_diff-1) = '1') then
 if (y_int(precision)(size_diff-2 downto 0) /= "000000") then -- Round up
 sin_int <= y_int(precision)(wordlength-1 downto size_diff) + 1;
 elsif (y_int(precision)(size_diff) = '1') then -- Round to nearest even
 sin_int <= y_int(precision)(wordlength-1 downto size_diff) + 1;
 else -- No rounding
 sin_int <= y_int(precision)(wordlength-1 downto size_diff);
 end if;
 else -- No rounding
 sin_int <= y_int(precision)(wordlength-1 downto wordlength-precision);
 end if;

 if (z_int(precision)(size_diff-1) = '1') then
 if (z_int(precision)(size_diff-2 downto 0) /= "000000") then -- Round up
 ang_int <= z_int(precision)(wordlength-1 downto size_diff) + 1;
 elsif (z_int(precision)(size_diff) = '1') then -- Round to nearest even
 ang_int <= z_int(precision)(wordlength-1 downto size_diff) + 1;
 else -- No rounding
 ang_int <= z_int(precision)(wordlength-1 downto size_diff);
 end if;
 else -- No rounding
 ang_int <= z_int(precision)(wordlength-1 downto wordlength-precision);
 end if;
 end process;

end Behavioral;

205

C. SYNTHESIS TOOL VARIABILITY

In addition to functional correctness, performance factors such as speed and area

are important when compiling designs for actual FPGA implementation. Such

performance factors are strongly dependant on the exact design, but other issues related

to the design synthesis environment also affect performance. The tools that translate a

schematic or VHDL design into an FPGA configuration file are extremely complicated.

Several different commercial vendors offer competing toolsets. Within a given vendor

product line, there are typically several levels of design tools and various generations of

software versions. Moving between these different design environments can

considerably influence the final placed-and-routed design. Furthermore, there are a

tremendous number of design optimization choices available within a particular design

package. Arriving at an optimal balance between speed, area, power, etc. is complicated

by the numerous choices regarding software tools and optimization settings. To achieve

consistent and predictable designs requires careful management of the source files

describing the design as well as following a repeatable design synthesis process.

The CFTP team established Xilinx’s ISE (Integrated Software Environment)

version 6.2i for LINUX as the baseline development environment. This toolset includes

XST (Xilinx Synthesis Tool), PAR (Place-And-Route) and other circuit mapping and

miscellaneous programs. The company Synplicity offers a competing package featuring

their Synplify design synthesis software. Synplify is widely used in industry and

considered superior to XST. Although it was not the intent of this research to produce

highly optimized CORDIC circuits, it is interesting to compare the results from these

competing software packages. Table A.2 shows how well XST and Synplify compiled

the CORDIC designs for several different levels of numerical precision.

206

Slice Count
(% of chip) Max Delay [nsec] Design

Method

External /
Internal

Wordlength
[bits] XST Synplify XST

(ModelSim) Synplify

Schematic 32 / 39 472 (6%) - 69 (40) -

32 / 39 892 (12%) 373 (5%) 26 (30) 22

16 / 20 265 (3%) 177 (2%) 20 (24) 20
VHDL

iterative
8 / 11 124 (1%) 83 (1%) 16 (22) 16

32 / 39 2131 (30%) 1931 (27%) 17 (26) 17

16 / 20 554 (7%) 459 (6%) 12 (22) 13
VHDL

pipeline
8 / 11 165 (2%) 136 (1%) 11 (20) 14

Table A.2 CORDIC Circuit Sizes and Speeds on Virtex XQVR600

In every case, Synplify yielded considerably smaller circuits with comparable

delay to those produced by XST. Circuit size should scale approximately linearly with

wordlength. For the iterative circuits a doubling in wordlength should cause a doubling

in size. This trend is followed in the Synplify data. However, XST was particularly

inefficient when compiling the “VHDL iterative: 32 / 39” design, using more than twice

as many slices as Synplify for the same design. Note that the functionally equivalent 32-

bit schematic design compiled through XST had slice usage much closer to the VHDL

version via Synplify. Furthermore, the XST versions of the 16-bit and 8-bit iterative

circuits differ by a factor of two, so there was clearly some anomalous behavior in the 32-

bit iterative XST design. For the pipeline circuits, a doubling in wordlength should cause

a quadrupling in size. Both XST and Synplify follow this trend fairly well.

Also shown in the table are estimated timing delays for the placed and routed

circuits. High-fidelity circuit simulations, such as ModelSim, can provide more accurate

timing estimates. ModelSim was used to verify the timing estimates from the synthesis

tools. These tests were not exhaustive since testing all 232 possible input values would be

prohibitively time-consuming. However, several sample input values were run through

each circuit so the delay between the clock edge and valid output data could be measured.

Timing delays reported by the synthesis tools were consistently lower that the delays

observed in the simulator. One notable exception was the 32-bit schematic version. Note

207

from the table above that the estimated delay for the schematic design is over twice that

for the functionally equivalent VHDL version. However, running several input values

through the simulator yielded a maximum delay of only 40 nsec, compared to the

estimated max delay of 69 nsec. To better understand this discrepancy, a design was

built that contained one copy of the schematic version and one copy of the VHDL

version. This design was run through the simulator and several dozen computation

sequences were analyzed. Surprisingly, the VHDL version had slightly larger delays for

most of the input values analyzed, though its maximum delay was less. This data

demonstrates that one must be cautious when interpreting timing estimates and, in

general, one should use more conservative (i.e., slower) clock speeds than indicated from

the estimates.

208

THIS PAGE INTENTIONALLY LEFT BLANK

209

APPENDIX B – MATLAB ERROR SIMULATION CODE

This appendix contains the MATLAB code used in Chapters V and VIII for

simulating faults in CORDIC and DCT calculations.

A. CORDIC ERROR PROPAGATION CODE

1. CORDIC Algorithm with Specific Forced Errors

% Josh Snodgrass
% CORDIC simulation for Chapter 5
%
% THIS VERSION INDUCES SPECIFIC ERRORS!!!!!
%
% Calculation of sine(z) and cosine(z)
%
% Current Limitations:
% input range -pi <= z <= +pi

clear all; close all;

%Calculate K for m iterations
m=8; % input/output wordlength, with 2 bits for sign and 1's
place
n=(m-2)+ceil(log2(m-2)); % internal precision, # fractional bits
K=1;
for j=0:m-1
 K=K*sqrt(1+2^(-2*j));
end

xin=1/K;
yin=0;
zin=pi/6; % Input angle = 30 degrees
ein=atan(2.^[0:-1:-(m-1)]);

%Pre-rotation
quadrant2=zin>pi/2;
quadrant3=zin<-pi/2;
if quadrant2
 zin=zin-pi;
elseif quadrant3
 zin=zin+pi;
end

[tmp,x0]=dec2bin(xin,n);
x0=[0 0 x0];
[tmp,y0]=dec2bin(yin,n);
y0=[0 0 y0];
[z0w,z0v]=dec2bin(abs(zin),n);
z0=[0 0 z0v];

210

if z0w(length(z0w))
 z0(2)=1;
end
if zin<0;
 z0=addbin2(~z0,zeros(size(z0)),1);
end
for i=1:length(ein)
 [tmp,e(i,:)]=dec2bin(ein(i),n);
end
e=[zeros(size(e,1),2) e];

x(1,:)=x0;
y(1,:)=y0;
z(1,:)=z0;

for i=1:m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Inject error in Y register during iteration 6
% if i==6
% y(i,4)=~y(i,4);
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 d(i)=~z(i,1);
% x(i+1)=x(i)-d(i)*y(i)/2^(i-1);
 if y(i,1)==1
 yshift=[ones(1,i-1) y(i,1:size(y,2)-(i-1))];
 else
 yshift=[zeros(1,i-1) y(i,1:size(y,2)-(i-1))];
 end
 if d(i)
 yshift=comp2s(yshift);
 end
 x(i+1,:)=addbin2(x(i,:),yshift,0);

% y(i+1)=y(i)+d(i)*x(i)/2^(i-1);
 if x(i,1)==1
 xshift=[ones(1,i-1) x(i,1:size(x,2)-(i-1))];
 else
 xshift=[zeros(1,i-1) x(i,1:size(x,2)-(i-1))];
 end
 if ~d(i)
 xshift=comp2s(xshift);
 end
 y(i+1,:)=addbin2(y(i,:),xshift,0);

% z(i+1)=z(i)-d(i)*e(i);
 evalue=e(i,:);
 if d(i)
 evalue=comp2s(evalue);
 end
 z(i+1,:)=addbin2(z(i,:),evalue,0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Inject error in stage 3 z-adder
% if i==3
% z(i+1,:)=addbin3(z(i,:),evalue,0);

211

% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%Post-rotation
if quadrant2|quadrant3
 xfinal=comp2s(x(size(x,1),:));
 yfinal=comp2s(y(size(y,1),:));
else
 xfinal=x(size(x,1),:);
 yfinal=y(size(y,1),:);
end

%Display outputs
if xfinal(1)
 xout=comp2s(xfinal);
 xout=-bin2dec(xout(2),xout(3:length(xout)));
else
 xout=bin2dec(xfinal(2),xfinal(3:length(xfinal)));
end

if yfinal(1)
 yout=comp2s(yfinal);
 yout=-bin2dec(yout(2),yout(3:length(yout)));
else
 yout=bin2dec(yfinal(2),yfinal(3:length(yfinal)));
end

zfinal=z(m+1,:);
if zfinal(1)
 zout=comp2s(zfinal);
 zout=-bin2dec(zout(2),zout(3:length(zout)));
else
 zout=bin2dec(zfinal(2),zfinal(3:length(zfinal)));
end

2. Supporting MATLAB Code for CORDIC Calculations

function sum = addbin3(x,y,cin)
% Josh Snodgrass
% Binary vector addition, ignore carry out
%
% Useful for 2's complement addition
% Inputs "x" and "y" are vectors
% Input "cin" is a scalar
%
% Input vector lengths for "x" and "y" must be equal
% Resultant vector "sum" has length = length(x)
%
% THIS VERSION INDUCES AN ERROR IN CARRY LOGIC!!!!!

212

if nargin<3
 disp('addbin3 accepts up to 3 inputs: x, y, cin');
end

if length(x)~=length(y)
 error('Input vectors must have same length');
end

c=zeros(1,length(x)+1);
if exist('cin')
 c(length(c))=cin;
end

for i=length(x):-1:1
 sum(i)=xor(xor(x(i),y(i)),c(i+1));
 c(i)=(x(i)&y(i))|(x(i)&c(i+1))|(y(i)&c(i+1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Inject error into position #6 carry bit
 if i==6
 c(i)=~c(i);
 end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end

function [w,v] = dec2bin(x,n)
% Josh Snodgrass
% Conversion of decimal number to binary representation
% To see both whole and fractional parts of number, use
% [w,v]=dec2bin(x,n)
%
% Current Limitations:
% input x must be non-negative
% output v set to n bits

if x<0
 error('Input value must be non-negative');
end

xw=fix(x);
xv=rem(x,1);

w=0;
i=1;
while(xw>0)
 w(i)=rem(xw,2);
 xw=fix(xw/2);
 i=i+1;
end
w=fliplr(w);

i=1;
while(i<=n)
 v(i)=fix(xv*2);
 xv=rem(xv*2,1);
 i=i+1;
end

213

if xv>=0.5 % round up
 xtemp=[0 w v];
 xtemp=addbin2(xtemp,zeros(length(xtemp)),1);
 w=xtemp(1:length(xtemp)-n);
 v=xtemp(length(xtemp)-n+1:length(xtemp));
end

function x = bin2dec(w,v)
% Josh Snodgrass
% Conversion of binary number to decimal representation
% To see both whole and fractional parts of number, use
% x=bin2dec(w,v)
%
% Current Limitations:
% input [w.v] must be non-negative

x=0;

xw=fix(x);
xv=rem(x,1);

for i=1:length(w)
 x=x+w(length(w)-(i-1))*2^(i-1);
end

for i=1:length(v)
 x=x+v(i)*2^(-1*i);
end

function w = comp2s(x)
% Josh Snodgrass
% Binary 2's complement --> first digit of w and x indicates sign
% Does check for allowable range, since 2's complement
% has larger range for negative numbers vs positive numbers
%
% Current limitations:
% Assumes x is a row vector of binary values {0,1}

if length(x)<2
 error('Input binary vector must have at least 2 elements!');
end

if x(1) & sum(x(2:length(x)))==0
 error('Input binary vector is at max negative range, complement
too big!');
end

w=addbin2(~x,zeros(size(x)),1);

214

B. DCT ERROR SIMULATION CODE

% Josh Snodgrass
%
% Error simulation code for DCT Algorithm

clear all; close all;

filename='goldhill.bmp'; filefrmt='bmp';
[g,cmap]=imread(filename,filefrmt);

[M,N]=size(g);
g=double(g);
G=zeros(size(g));
Gfaultfree=zeros(size(g));

block=8;

err_duration=18350/(block^2);

% 70 msec reconfig * 512x512 pixels / 1 Hz
%err_duration=8/(block^2);

% 24 microsec partial * 512x512 pixels / 1 Hz
err_start_x=floor((N/block)*rand);
err_start_y=floor((M/block)*rand);
err_stop_x=err_start_x-1+…

ceil((err_duration+err_start_y)/(M/block));
err_stop_y=mod(err_start_y+err_duration,(M/block));

for x=1:block:N
 for y=1:block:M
 err=0;
 if (floor(x/block)==err_start_x)
 if (floor(x/block)==err_stop_x)
 if (floor(y/block)>=err_start_y & …

floor(y/block)<=err_stop_y)
 err=1;
 end
 elseif (floor(y/block)>=err_start_y)
 err=1;
 end
 elseif (floor(x/block)>err_start_x & …

floor(x/block)<err_stop_x)
 err=1;
 elseif (floor(x/block)==err_stop_x & …

floor(y/block)<=err_stop_y)
 err=1;
 end

 Gfaultfree(x:x+block-1,y:y+block-1)=…

DCT_josh(g(x:x+block-1,y:y+block-1),block,0);
 G(x:x+block-1,y:y+block-1)=…

DCT_josh(g(x:x+block-1,y:y+block-1),block,err);
 end
end

215

for x=1:block:N
 for y=1:block:M
 h(x:x+block-1,y:y+block-1)=…

IDCT_josh(G(x:x+block-1,y:y+block-1),block);
 end
end

g_h=g-h;
MSE=(1/(M*N))*(sum(sum(g_h.^2))),
PSNR=10*log10((255^2)/MSE),

figure(1);
image(g); set(gcf,'Colormap',cmap,'Position',[25 525 500 450]);
axis equal;
title('Original Image');

figure(3);
image(h); set(gcf,'Colormap',cmap,'Position',[550 525 500 450]);
axis equal;
title('Restored Image');

function G = DCT_josh(g,N,err)
% Josh Snodgrass
%
% DCT Algorithm (square matrix)
% G(u,v) = (2/N)*c(u)*c(v)*(sum(sum(g(m,n)*
% cos((2*m+1)*pi*u/(2*N))*cos((2*n+1)*pi*v/(2*N));
% where
% u,v=0,1,2,...,N-1
% c(0)=1/sqrt(2)
% c(n)=1

c=ones(1,N); c(1)=1/sqrt(2);

maxG=N*255; % for 8-bit source images

for u=1:N
 for v=1:N
 Gscale=(2/N)*c(u)*c(v);
 Gsum=0;
 for m=1:N
 for n=1:N
 Gsum=Gsum+g(m,n)*cos((2*m-1)*pi*…

(u-1)/(2*N))*cos((2*n-1)*pi*(v-1)/(2*N));
 end
 end
 %G(u,v)=Gscale*Gsum;
 % Rounding result to 32-bit fixed point format
 % 8-bit source image --> DCT coefficients +/- 2040
 % 16-bit source image --> DCT coefficients +/- 524,288
 G(u,v)=(fix((10^6)*Gscale*Gsum))/(10^6);

% 32-bit --> steps = 10^-6
 %G(u,v)=128*(fix(Gscale*Gsum/128));

% 5-bit --> steps = 128
 end
end

216

if err
 Gpower=sum(sum(abs(G)));
 for u=1:N
 for v=1:N
 G(u,v)=2*(rand-0.5)*maxG;
 end
 end
 Gpower2=sum(sum(abs(G)));
 G=G./(Gpower2/Gpower);
end

if 0 %err
 for u=1:N
 for v=1:N
 G(u,v)=(fix(0.0629*G(u,v))/0.0629);

% 8-bit --> steps = 15.9
 %G(u,v)=(fix(0.00784*G(u,v)))/0.00784;

% 5-bit --> steps = 127.5
 end
 end
end

function g = IDCT_josh(G,N)
% Josh Snodgrass
%
% Inverse-DCT Algorithm (square matrix)
% g(m,n) = (2/N)*(sum(sum(c(u)*c(v)*G(u,v)*
% cos((2*m+1)*pi*u/(2*N))*cos((2*n+1)*pi*v/(2*N));
% where
% m,n=0,1,2,...,N-1
% c(0)=1/sqrt(2)
% c(n)=1

c=ones(1,N); c(1)=1/sqrt(2);

for m=1:N
 for n=1:N
 gscale=(2/N);
 gsum=0;
 for u=1:N
 for v=1:N
 gsum=gsum+c(u)*c(v)*G(u,v)*cos((2*m-1)*pi*

(u-1)/(2*N))*cos((2*n-1)*pi*(v-1)/(2*N));
 end
 end
 g(m,n)=gscale*gsum;
 end
end

217

LIST OF REFERENCES

[1] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P. Graham, “The Reliability
of FPGA Circuit Designs in the Presence of Radiation Induced Configuration
Upsets,” in Proc. 11th Annual IEEE Symp. on Field-Programmable Custom
Computing Machines, Apr 2003

[2] P. Graham, M. Caffrey, M. Wirthlin, D. E. Johnson, and N. Rollins,
“Reconfigurable Computing in Space: From Current Technology to Reconfigurable
Systems-on-a-Chip,” in Proc. IEEE Aerospace Conf., Mar 2003

[3] D. Brodrick, A. Dawood, N. Bergmann, and M. Wark, “Error Detection for
Adaptive Computing Architectures in Spacecraft Applications,” in Proc. 6th
Australasian Computer Systems Architecture Conf., Jan 2001

[4] P. Graham, M. Caffrey, J. Zimmerman, P. Sundararajan, E. Johnson, and C.
Patterson, “Consequences and Categories of SRAM FPGA Configuration SEUs,”
in Proc. 6th Annual Conf. on MAPLD, Sep 2003

[5] F. Sturesson, S. Mattsson, C. Carmichael, and R. Harboe-Sorensen, “Heavy Ion
Characterization of SEU Mitigation Methods for the Virtex FPGA,” in Proc. 6th
European Conf. on Radiation and Its Effects on Components and Systems, Sep
2001

[6] C. C. Yui, G. M. Swift, C. Carmichael, R. Koga, and J. S. George, “SEU
Mitigation Testing of Xilinx Virtex II FPGAs,” IEEE Radiation Effects Data
Workshop, Jul 2003

[7] P. Graham, M. Caffrey, D. E. Johnson, N. Rollins, and M. Wirthlin, “SEU
Mitigation for Half-Latches in Xilinx Virtex FPGAs,” IEEE Trans. Nuclear
Science, Dec 2003

[8] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A Fault Injection
Analysis of Virtex FPGA TMR Design Methodology,” in Proc. 6th European Conf.
on Radiation and Its Effects on Components and Systems, Sep 2001

[9] N. Rollins, M. J. Wirthlin, and P. Graham, “Evaluation of Power Costs in Applying
TMR to FPGA Designs,” in Proc. 7th Annual Conf. on MAPLD, Sep 2004

[10] J. H. Anderson and F. N. Najm, “Power Estimation Techniques for FPGAs,” IEEE
Trans. VLSI Systems, Oct 2004

[11] J. Shea, “Computer Design Problems for the Space Environment,” in Proc. Conf.
on Spaceborne Computer Engineering, Oct 1962

[12] G. W. Donohoe and P. S. Yeh, “Low-Power Reconfigurable Processor,” in Proc.
IEEE Aerospace Conf., Mar 2002

218

[13] E. P. Stabler and C. J. Creveling, “Spacecraft Computers for Scientific Information
Systems,” in Proceedings of the IEEE, Dec 1966

[14] P. L. Murray and D. VanBuren, “Single Event Effect Mitigation in ReConfigurable
Computers for Space Applications,” in Proc. IEEE Aerospace Conf., Mar 2005

[15] S. C. Persyn, M. McLelland, M. Epperly, and B. Walls, “Evolution of Digital
Signal Processing Based Spacecraft Computing Solutions,” in Proc. IEEE
Aerospace Conf., Mar 2002

[16] D. Roussel-Dupre, M. Caffrey, J. Buckley, and P. Davies, “Cibola Flight
Experiment,” in Proc. AIAA/USU Conf. on Small Satellites, Aug 2004

[17] G. Messenger and M. Ash, Single Event Phenomena, Chapman and Hall, 1997

[18] P. P. Shirvani, “Fault-Tolerant Computing for Radiation Environments,” PhD
Dissertation, Stanford University, 2001

[19] K. Clark, “Modeling SET’s in Complex Digital Systems,” PhD Dissertation, Naval
Postgraduate School, 2002

[20] W. Gibbons and H. Ames, “Use of FPGAs in Critical Space Flight Applications –
A Hard Lesson,” in Proc. 2nd Annual Conf. on MAPLD, Sep 1999

[21] K. Mohanram, “Lowering Power Consumption in Concurrent Checkers via Input
Ordering,” IEEE Trans. VLSI Systems, Nov 2004

[22] H. Quinn and P. Graham, “Terrestrial-based Radiation Upsets: a Cautionary Tale,”
in Proc. 13th Annual IEEE Symp. on Field-Programmable Custom Computing
Machines, Apr 2005

[23] J. F. Wakerly, Digital Design: Principles and Practices, 2nd ed, Prentice Hall, 1994

[24] Xilinx Corp., “Important Dates in Xilinx History,” (website)
http://www.xilinx.com/company/xilinxstory/timeline.htm, Aug 2005

[25] U. Meyer-Baese, DSP with FPGAs, Springer, 2001

[26] D. J. Mabry, S. J. Hansel, and J. B. Blake, “The SAMPEX Data Processing Unit,”
IEEE Trans. Geoscience and Remote Sensing, May 1993

[27] J. Oberg, “Titan Calling,” IEEE Spectrum, Oct 2004

[28] S. Y. Yu, “Fault Tolerance in Adaptive Real-Time Computing Systems,” PhD
Dissertation, Stanford University, 2001

[29] A. Maheshwari, W. Burleson, and R. Tessier, “Trading Off Transient Fault
Tolerance and Power Consumption in Deep Submicron (DSM) VLSI Circuits,”
IEEE Trans. VLSI Systems, Mar 2004

219

[30] B. Parhami, Computer Arithmetic, Oxford University Press, 2000

[31] P. Ranganathan, “Power Management – Guest Lecture for CS4135, NPS,” Naval
Postgraduate School, Nov 2004

[32] R. L. Phelps, “Operational Experiences with the Petite Amateur Navy Satellite –
PANSAT,” in Proc. 15th Annual AIAA/USU Conf. on Small Satellites, Aug 2001

[33] M. Caffrey, “A Space-Based Reconfigurable Radio,” in Proc. 5th Annual Conf. on
MAPLD, Sep 2002

[34] S. Vadlamani and W. Mahmoud, “Comparison of CORDIC Algorithm
Implementations on FGPA families,” in Proc. 34th Southeastern Symp. on System
Theory, Mar 2002

[35] W. J. Huang, N. Saxena, and E. J. McCluskey, “A Reliable LZ Data Compressor
on Reconfigurable Coprocessors,” in Proc. Symp. on Field-Programmable Custom
Computing Machines, Apr 2000

[36] S. Hong, S. S. Chin, and D. Connaway, “Variable-Rate Pipelined Multiplier Design
for Reconfigurable DSP Applications,” in Proc. 45th Midwest Symp. on Circuits
and Systems, Aug 2002

[37] R. V. K. Pillai, S. Y. A. Shah, A. J. Al-Khalili, and D. Al-Khalili, “Low Power
Floating Point MAFs – A Comparative Study,” in Proc. 6th Intl. Symp. on Signal
Processing and its Applications, Aug 2001

[38] C. Nagendra, M. J. Irwin, and R. M. Owens, “Area-Time-Power Tradeoffs in
Parallel Adders,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal
Processing, Oct 1996

[39] T. R. N. Rao, Error Coding for Arithmetic Processors, Academic Press, 1974

[40] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System
Design, Digital Press, 1982

[41] F. Lima, L. Carro, and R. Reis, “Reducing Pin and Area Overhead in Fault-
Tolerant FPGA-based Designs,” in Proc. ACM/SIGDA 11th Intl. Symp. on FPGAs,
Feb 2003

[42] D. E. Johnson, K. S. Morgan, M. J. Wirthlin, M. P. Caffrey, and P. S. Graham,
“Detection of Configuration Memory Upsets Causing Persistent Errors in SRAM-
based FPGAs,” in Proc. 7th Annual Conf. on MAPLD, Sep 2004

[43] M. Caffrey, P. Graham, E. Johnson, M. Wirthlin, N. Rollins, and C. Carmichael,
“Single-Event Upsets in SRAM FPGAs,” in Proc. 5th Annual Conf. on MAPLD,
Sep 2002

220

[44] M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M.
Rebaudengo, D. Bortolano, M. Bellato, P. Zambolin, and A. Candelori,
“Identification and Classification of Single-Event Upsets in the Configuration
Memory of SRAM-Based FPGAs,” IEEE Trans. Nuclear Science, Dec 2003

[45] A. Doumar and H. Ito, “Detecting, Diagnosing, and Tolerating Faults in SRAM-
based Field Programmable Gate Arrays: a Survey,” IEEE Trans. VLSI Systems, Jun
2003

[46] S. Mitra and E. J. McCluskey, “Which Concurrent Error Detection Scheme to
Choose?” in Proc. International Test Conference, Oct 2000

[47] T. R. Stankovic, M. K. Stojcev, and G. L. Djordjevic, “Design of Self-Checking
Combinational Circuits,” in Proc. 6th Intl. Conf. on Telecommunications in Modern
Satellite, Cable and Broadcasting Service (TELSIKS), Oct 2003

[48] G. M. Swift, S. Rezgui, J. George, C. Carmichael, M. Napier, J. Maksymowicz, J.
Moore, A. Lesea, R. Koga, and T. F. Wrobel, “Dynamic Testing of Xilinx Virtex-II
Field Programmable Gate Array (FPGA) Input/Output Blocks (IOBs),” IEEE
Trans. Nuclear Science, Dec 2004

[49] Xilinx Corp., “Application Note 216: Correcting Single-Event Upsets Through
Virtex Partial Configuration,” version 1.0, Jun 2000

[50] J. DeVale, “Traditional Reliability,” (website) http://www.ece.cmu.edu/~koopman/
des_s99/traditional_reliability/, Sep 2005

[51] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective Triple Modular
Redundancy (STMR) Based Single-Event Upset (SEU) Tolerant Synthesis for
FPGAs,” IEEE Trans. Nuclear Science, Oct 2004

[52] V. Chandrasekhar, S. N. Mahammad, V. Muralidaran, and V. Kamakoti, “Reduced
Triple Modular Redundancy for Tolerating SEUs in SRAM-based FPGAs,” in
Proc. 8th Annual Conf. on MAPLD, Sep 2005

[53] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improving FPGA
Design Robustness with Partial TMR,” in Proc. 8th Annual Conf. on MAPLD, Sep
2005

[54] T. R. N. Rao, “Biresidue Error-Correcting Codes for Computer Arithmetic,” IEEE
Trans. Computers, May 1970

[55] B. Shim, S. R. Sridhara, and N. R. Shanbhag, “Reliable Low-Power Digital Signal
Processing via Reduced Precision Redundancy,” in IEEE Trans. VLSI Systems,
May 2004

[56] B. Littlewood, “The Use of Proof in Diversity Arguments,” IEEE Trans. Software
Engineering, Oct 2000

221

[57] M. Caccamo and G. Buttazzo, “Optimal Scheduling for Fault-Tolerant and Firm
Real-Time Systems,” in Proc. 5th Intl. Conf. on Real-Time Computing Systems and
Applications, Oct 1998

[58] H. Chetto and M. Chetto, “An Adaptive Scheduling Algorithm for Fault-Tolerant
Real-Time Systems,” IEE Software Engineering Journal, May 1991

[59] L. W. W. Liu, W. K. Shih, K. J. Lin, R. Bettati, and J. Y. Chung, “Imprecise
Computations,” IEEE Proceedings, Jan 1994

[60] C. C. Han, K. G. Shin, and J. Wu, “A Fault-Tolerant Scheduling Algorithm for
Real-Time Periodic Tasks with Possible Software Faults,” IEEE Trans. Computers,
Mar 2003

[61] S. Kakarla and S. Katkoori, “Partial Evaluation Based Redundancy for Single
Event Upset Mitigation in Combinational Circuits,” in Proc. 8th Annual Conf. on
MAPLD, Sep 2005

[62] W. W. Peterson and M. O. Rabin, “On Codes for Checking Logical Operations,”
IBM Journal of Research and Development, Apr 1959

[63] G. K. Wallace, “The JPEG Still Picture Compression Standard,” Communications
of the ACM, Apr 1991

[64] B. Sklar, Digital Communications, 2nd ed, Prentice Hall, 2000

[65] J. Euh, J. Chittamuru, and W. Burleson, “CORDIC Vector Interpolator for Power-
Aware 3D Computer Graphics,” IEEE Workshop on Signal Processing Systems,
Oct 2002

[66] AFRL Detachment 15, “AMOS User’s Manual – Maui Space Surveillance
System,” in Proc. AMOS Technical Conf., Sep 2002

[67] G. Latif-Shabgahi, J. M. Bass, and S. Bennett, “A Taxonomy for Software Voting
Algorithms Used in Safety-Critical Systems,” IEEE Trans. Reliability, Sep 2004

[68] Xilinx Corp., “Application Note 197: Triple Modular Redundancy Design
Techniques for Virtex FPGAs,” version 1.0.1, Jul 2006

[69] J. L. Gersting, R. L. Nist, D. B. Roberts, and R. L. Van Valkenburg, “A
Comparison of Voting Algorithms for N-Version Programming,” in Proc. 24th
Annual Hawaii Intl. Conf. on System Sciences, Jan 1991

[70] P. R. Lorczak, A. K. Caglayan, and D. E. Eckhardt, “A Theoretical Investigation of
Generalized Voters for Redundant Systems,” in Proc. IEEE 19th Annual Intl. Symp.
on Fault-Tolerant Computing Systems, Jun 1989

222

[71] O. Cadenas and G. Megson, “Power performance with gated clocks of a pipelined
Cordic Core,” in Proc. 5th Intl. Conf. on ASIC, Oct 2003

[72] Y. Ye, K. Roy, and R. Drechsler, “Power Consumption in XOR-based Circuits,” in
Proc. Asia and South Pacific Design Automation Conf., Jan 1999

[73] M. Guo, M. O. Ahmad, M. N. S. Swamy, and C. Wang, “FPGA Design and
Implementation of a Low-Power Systolic Array-Based Adaptive Viterbi Decoder,”
IEEE Trans. Circuits and Systems, Feb 2005

[74] J. H. Anderson, F. N. Najm, and T. Tuan, “Active Leakage Power Optimization for
FPGAs,” in Proc. ACM/SIGDA 12th Intl. Symp. on FPGAs, Feb 2004

[75] M. Keating and P. Bricaud, Reuse Methodology Manual, 2nd ed, Kluwer Academic
Publishers, Boston MA, 1999

[76] C. C. Wang and C. P. Kwan, “Low Power Technology Mapping by Hiding High-
Transition Paths in Invisible Edges for LUT-Based FPGAs,” in Proc. IEEE Intl.
Symp. on Circuits and Systems, Jun 1997

[77] R. Pandey and S. Chattopadhyay, “Low Power Technology Mapping for LUT
based FPGA – A Genetic Algorithm Approach,” in Proc. 16th Intl. Conf. on VLSI
Design, Jan 2003

[78] S. S. Demirsoy, A. Dempster, and I. Kale, “Transition Analysis on FPGA for
Multiplier-Block Based FIR Filter Structures,” in Proc. 7th IEEE Intl. Conf. on
Electronics, Circuits and Systems, Dec 2000

[79] H. Kim and J. G. Chung, “Minimizing Switching Activity in Input Word by Offset
and its Low Power Applications for FIR Filters,” in Proc. IEEE Intl. Symp. on
Circuits and Systems, May 2003

[80] A. Tiwari and K. A. Tomko, “Enhanced Reliability of Finite-State Machines in
FPGA Through Efficient Fault Detection and Correction,” IEEE Trans. Reliability,
Sep 2005

[81] F. Wang, K. Ramamritham, and J. A. Stankovic, “Determining Redundancy Levels
for Fault Tolerant Real-Time Systems,” IEEE Trans. Computers, Feb 1995

[82] M. Yu and W. W. Dai, “Single-Layer Fanout Routing and Routability Analysis for
Ball Grid Arrays,” in Proc. IEEE/ACM Intl. Conf. on Computer-Aided Design, Nov
1995

[83] B. Bridgford and C. Carmichael, “A Cost/Benefit Framework for Evaluating Re-
Configurable FPGA SEU Mitigation Techniques,” in Proc. 8th Annual Conf. on
MAPLD, Sep 2005

223

[84] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-Induced
Multi-Bit Upsets in SRAM-Based FPGAs,” in Proc. Nuclear Science Radiation
Effects Conf., Jul 2005

[85] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. Wirthlin, “SEU-
Induced Persistent Error Propagation in FPGAs,” IEEE Trans. Nuclear Science,
Dec 2005

[86] C. Carmichael, B. Bridgford, G. Swift, and M. Napier, “A Triple Modular
Redundancy Scheme for SEU Mitigation of Static Latch-Based FPGAs,” in Proc.
7th Annual Conf. on MAPLD, Sep 2004

[87] A. Campbell, P. McDonald, and K. Ray, “Single Event Upset Rates in Space,”
IEEE Trans. Nuclear Science, Dec 1992

[88] C. Carmichael, E. Fuller, J. Fabula, and F. Lima, “Proton Testing of SEU
Mitigation Methods for the Virtex FPGA,” in Proc. 4th Annual Conf. on MAPLD,
Sep 2001

[89] Xilinx Corp., “QPro Virtex 2.5V Radiation Hardened FPGAs,” Technical Report
DS028 (v1.2), Nov 2001

[90] R. Andraka, “A Survey of CORDIC Algorithms for FPGA Based Computers,” in
Proc. ACM/SIGDA 6th Intl. Symp. on FPGAs, Feb 1998

[91] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Trans.
Electronic Computers, Sep 1959

[92] H. Jeong, J. Kim, and W. Cho, “Low-Power Multiplierless DCT Architecture
Using Image Data Correlation,” IEEE Trans. Consumer Electronics, Feb 2004

[93] S. Yu and E. E. Swartzlander Jr., “A Scaled DCT Architecture with the CORDIC
Algorithm,” IEEE Trans. Signal Processing, Jan 2002

[94] Y. H. Hu, “The Quantization Effects of the CORDIC Algorithm,” IEEE Trans.
Signal Processing, Apr 1992

[95] Xilinx Corp., “CORDIC v3.0,” Product Specification DS249, Apr 2005

[96] W. W. Peterson, “On Checking an Adder,” IBM Journal of Research and
Development, Apr 1958

[97] M. B. Lin and A. Y. Oruc, “A Fault-Tolerant Permutation Network Modulo
Arithmetic Processor,” IEEE Trans. VLSI Systems, Sep 1994

[98] J. Coudeyras, “Radiation Testing of the Configurable Fault Tolerant Processor
(CFTP) for Space-Based Applications,” Master’s Thesis, Naval Postgraduate
School, 2005

224

[99] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin, “Accelerator
Validation of an FPGA SEU Simulator,” IEEE Trans. Nuclear Science, Dec 2003

[100] N. Rollins and M. J. Wirthlin, “Reducing Energy in FPGA Multipliers Through
Glitch Reduction,” in Proc. 8th Annual Conf. on MAPLD, Sep 2005

[101] Atmel Corporation, “ATMEL AT40KEL040 Re-Programmable SRAM based
FPGA Radiation Test Report,” (website) http://www.klabs.org/
richcontent/fpga_content/atmel/at40kel04_mtr041105.pdf, Jun 2006

[102] H. Quinn, P. Graham, J. Krone, M. Caffrey, S. Rezgui, and C. Carmichael,
“Radiation-Induced Multi-Bit Upsets in Xilinx SRAM-Based FPGAs,” in Proc. 8th
Annual Conf. on MAPLD, Sep 2005

[103] M. Surratt, “CFTP Development Environment Technical Manual,” Naval
Postgraduate School, May 2006

[104] K. R. Rao and P. Yip, Discrete Cosine Transform – Algorithms, Advantages, and
Applications, Academic Press, 1990

[105] M.T. Sun, T.C. Chen, and A. M. Gottlieb, “VLSI Implementation of a 16x16
Discrete Cosine Transform,” IEEE Trans. Circuits and Systems, Apr 1989

[106] S. Ramachandran, S. Srinivasan, and R. Chen, “EPLD-Based Architecture of Real
Time 2D-Discrete Cosine Transform and Quantization for Image Compression,” in
Proc. IEEE Intl. Symp. on Circuits and Systems, Jun 1999

[107] Y. Yang, C. Wang, M. O. Ahmad, and M. N. S. Swamy, “An FPGA
Implementation of an On-Line Radix-4 CORDIC IDCT Core,” in Proc. IEEE Intl.
Symp. on Circuits and Systems, May 2002

[108] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE Trans.
Computers, Jan 1974

[109] M. Violante, L. Sterpone, M. Ceschia, D. Bortolato, P. Bernardi, M. Sonza Reorda,
and A. Paccagnella, “Simulation-Based Analysis of SEU Effects in SRAM-Based
FPGAs,” IEEE Trans. Nuclear Science, Dec 2004

[110] K. Kota and J. R. Cavallaro, “Numerical Accuracy and Hardware Tradeoffs for
CORDIC Arithmetic for Special-Purpose Processors,” IEEE Trans. Computers, Jul
1993

225

INITIAL DISTRIBUTION

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Herschel Loomis
Naval Postgraduate School
Monterey, California

4. Professor Jon Butler
Naval Postgraduate School
Monterey, California

5. Professor Douglas Fouts
Naval Postgraduate School
Monterey, California

6. Professor Sherif Michael
Naval Postgraduate School
Monterey, California

7. Professor Alan Ross
Naval Postgraduate School
Monterey, California

8. Joshua Snodgrass
Naval Postgraduate School
Monterey, California

9. Mindy Surratt
Naval Research Laboratory
Washington, DC

10. Tim Meehan
Naval Research Laboratory
Washington, DC

11. Dr Kenneth Clark
Naval Research Laboratory
Washington, DC

